We study the $S_3$-symmetric two Higgs doublet model by adding two generations of vector like leptons (VLL) which are odd under a discrete $Z_2$ symmetry. The lightest neutral component of the VLL acts as a dark matter (DM) whereas the full VLL set belongs to a dark sector with no mixings allowed with the standard model fermions. We analyse the model in light of dark matter and collider searches. We show that the DM is compatible with the current relic density data as well as satisfying all direct and indirect dark matter search constraints. We choose some representative points in the model parameter space allowed by all aforementioned dark matter constraints and present a detailed collider analysis of multi-lepton signal viz. the mono-lepton, di-lepton, tri-lepton and four-lepton along with missing transverse energy in the final state using both the cut-based analysis and multivariate analysis respectively at the high luminosity 14 TeV LHC run.
We propose a 2-Higgs doublet model (2HDM) with a global non-Abelian flavor symmetry $mathcal{Q}_6timesmathcal{Z}_2$. This discrete group accounts for the observed pattern of fermion masses and mixing angles after spontaneous symmetry breaking. In this scenario only the third generation of fermions get their masses as in the Standard Model (SM). The masses of the remaining fermions are generated through a seesaw-like mechanism. To that end, the matter content of the 2HDM is enlarged by introducing electrically charged vector-like fermions (VLFs), right handed Majorana neutrinos and several SM scalar singlets. Here we study the processes involving VLFs that are within the reach of the Large Hadron Collider (LHC). We perform collider studies for vector-like leptons (VLLs) and vector-like quarks (VLQs), focusing on double production channels for both cases, while for VLLs single production topologies are also included. Utilizing genetic algorithms for neural network optimization, we determine the statistical significance for a hypothetical discovery at future LHC runs. In particular, we show that we can not safely exclude VLLs for masses greater than $200~mathrm{GeV}$. For VLQs in our model, we show that we can probe their masses up to 3.8 TeV, if we take only into account the high-luminosity phase of the LHC. Considering Run-III luminosities, we can also exclude VLQs for masses up to $3.4~mathrm{TeV}$. We also show how the model with predicted VLL masses accommodates the muon anomalous magnetic moment.
We argue that in models with several high scales; e.g. in composite Higgs models or in gauge extensions of the Standard Model (SM), vector-like leptons can be likely produced in a relatively large $sqrt{s}$ region of the phase space. Likewise, they can easily decay into final states not containing SM gauge bosons. This contrasts with the topology in which these new particles are being searched for at the LHC. Adopting an effective field theory approach, we show that searches for excited leptons must be used instead to test this scenario. We derive bounds on all the relevant interactions of dimension six; the most constrained ones being of about $0.05$ TeV$^{-2}$. We build new observables to improve current analyses and study the impact on all single-field UV completions of the SM extended with a vector-like lepton that can be captured by the effective field theory at tree level, in the current and in the high-luminosity phase of the LHC.
We examined the influence of additional scalar doublet on the parameter space of the Standard Model supplemented with a generation of new vector like leptons. In particular we identified the viable regions of parameter space by inspecting various constraints especially electroweak precision (S, T and U) parameters. We demonstrated that the additional scalar assists in alleviating the tension of electroweak precision constraints and thus permitting larger Yukawa mixing and mass splittings among vector like species. We also compared and contrasted the regions of parameter space pertaining to the latest LHC Higgs to diphoton channel results in this scenario with vector like leptons in single Higgs doublet and pure two Higgs doublet model case.
We investigate the viability of electroweak baryogenesis in a model with a first order electroweak phase transition induced by the addition of two gauge singlet scalars. A vector-like lepton doublet is introduced in order to provide CP violating interactions with the singlets and Standard Model leptons, and the asymmetry generation dynamics are examined using the vacuum expectation value insertion approximation. We find that such a model is readily capable of generating sufficient baryon asymmetry while satisfying electron electric dipole moment and collider phenomenology constraints.
The notion of stringy naturalness-- that an observable O_2 is more natural than O_1 if more (phenomenologically acceptable) vacua solutions lead to O_2 rather than O_1-- is examined within the context of the Standard Model (SM) and various SUSY extensions: CMSSM/mSUGRA, high-scale SUSY and radiatively-driven natural SUSY (RNS). Rather general arguments from string theory suggest a (possibly mild) statistical draw towards vacua with large soft SUSY breaking terms. These vacua must be tempered by an anthropic veto of non-standard vacua or vacua with too large a value of the weak scale m(weak). We argue that the SM, the CMSSM and the various high-scale SUSY models are all expected to be relatively rare occurances within the string theory landscape of vacua. In contrast, models with TeV-scale soft terms but with m(weak)~100 GeV and consequent light higgsinos (SUSY with radiatively-driven naturalness) should be much more common on the landscape. These latter models have a statistical preference for m_h~ 125 GeV and strongly interacting sparticles beyond current LHC reach. Thus, while conventional naturalness favors sparticles close to the weak scale, stringy naturalness favors sparticles so heavy that electroweak symmetry is barely broken and one is living dangerously close to vacua with charge-or-color breaking minima, no electroweak breaking or pocket universe weak scale values too far from our measured value. Expectations for how landscape SUSY would manifest itself at collider and dark matter search experiments are then modified compared to usual notions.