Do you want to publish a course? Click here

Leaving Goals on the Pitch: Evaluating Decision Making in Soccer

89   0   0.0 ( 0 )
 Added by Pieter Robberechts
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Analysis of the popular expected goals (xG) metric in soccer has determined that a (slightly) smaller number of high-quality attempts will likely yield more goals than a slew of low-quality ones. This observation has driven a change in shooting behavior. Teams are passing up on shots from outside the penalty box, in the hopes of generating a better shot closer to goal later on. This paper evaluates whether this decrease in long-distance shots is warranted. Therefore, we propose a novel generic framework to reason about decision-making in soccer by combining techniques from machine learning and artificial intelligence (AI). First, we model how a team has behaved offensively over the course of two seasons by learning a Markov Decision Process (MDP) from event stream data. Second, we use reasoning techniques arising from the AI literature on verification to each teams MDP. This allows us to reason about the efficacy of certain potential decisions by posing counterfactual questions to the MDP. Our key conclusion is that teams would score more goals if they shot more often from outside the penalty box in a small number of team-specific locations. The proposed framework can easily be extended and applied to analyze other aspects of the game.



rate research

Read More

Action selection from many options with few constraints is crucial for improvisation and co-creativity. Our previous work proposed creative arc negotiation to solve this problem, i.e., selecting actions to follow an author-defined `creative arc or trajectory over estimates of novelty, unexpectedness, and quality for potential actions. The CARNIVAL agent architecture demonstrated this approach for playing the Props game from improv theatre in the Robot Improv Circus installation. This article evaluates the creative arc negotiation experience with CARNIVAL through two crowdsourced observer studies and one improviser laboratory study. The studies focus on subjects ability to identify creative arcs in performance and their preference for creative arc negotiation compared to a random selection baseline. Our results show empirically that observers successfully identified creative arcs in performances. Both groups also preferred creative arc negotiation in agent creativity and logical coherence, while observers enjoyed it more too.
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks in stochastic, complex environments. By modeling the agents behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals while deceiving outside observers about its true goal. We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies via linear programming. The proposed approach enables the agent to exhibit a variety of tunable deceptive behaviors while ensuring the satisfaction of probabilistic constraints on the behavior. We evaluate the performance of the proposed approach via comparative user studies and present a case study on the streets of Manhattan, New York, using real travel time distributions.
Actionable Cognitive Twins are the next generation Digital Twins enhanced with cognitive capabilities through a knowledge graph and artificial intelligence models that provide insights and decision-making options to the users. The knowledge graph describes the domain-specific knowledge regarding entities and interrelationships related to a manufacturing setting. It also contains information on possible decision-making options that can assist decision-makers, such as planners or logisticians. In this paper, we propose a knowledge graph modeling approach to construct actionable cognitive twins for capturing specific knowledge related to demand forecasting and production planning in a manufacturing plant. The knowledge graph provides semantic descriptions and contextualization of the production lines and processes, including data identification and simulation or artificial intelligence algorithms and forecasts used to support them. Such semantics provide ground for inferencing, relating different knowledge types: creative, deductive, definitional, and inductive. To develop the knowledge graph models for describing the use case completely, systems thinking approach is proposed to design and verify the ontology, develop a knowledge graph and build an actionable cognitive twin. Finally, we evaluate our approach in two use cases developed for a European original equipment manufacturer related to the automotive industry as part of the European Horizon 2020 project FACTLOG.
In this work, we introduce a new approach for the efficient solution of autonomous decision and planning problems, with a special focus on decision making under uncertainty and belief space planning (BSP) in high-dimensional state spaces. Usually, to solve the decision problem, we identify the optimal action, according to some objective function. We claim that we can sometimes generate and solve an analogous yet simplified decision problem, which can be solved more efficiently; a wise simplification method can lead to the same action selection, or one for which the maximal loss can be guaranteed. Furthermore, such simplification is separated from the state inference, and does not compromise its accuracy, as the selected action would finally be applied on the original state. First, we present the concept for general decision problems, and provide a theoretical framework for a coherent formulation of the approach. We then practically apply these ideas to BSP problems, which can be simplified by considering a sparse approximation of the initial (Gaussian) belief. The scalable belief sparsification algorithm we provide is able to yield solutions which are guaranteed to be consistent with the original problem. We demonstrate the benefits of the approach in the solution of a highly realistic active-SLAM problem, and manage to significantly reduce computation time, with practically no loss in the quality of solution. This work is conceptual and fundamental, and holds numerous possible extensions.
We propose a new approach for solving a class of discrete decision making problems under uncertainty with positive cost. This issue concerns multiple and diverse fields such as engineering, economics, artificial intelligence, cognitive science and many others. Basically, an agent has to choose a single or series of actions from a set of options, without knowing for sure their consequences. Schematically, two main approaches have been followed: either the agent learns which option is the correct one to choose in a given situation by trial and error, or the agent already has some knowledge on the possible consequences of his decisions; this knowledge being generally expressed as a conditional probability distribution. In the latter case, several optimal or suboptimal methods have been proposed to exploit this uncertain knowledge in various contexts. In this work, we propose following a different approach, based on the geometric intuition of distance. More precisely, we define a goal independent quasimetric structure on the state space, taking into account both cost function and transition probability. We then compare precision and computation time with classical approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا