Do you want to publish a course? Click here

Actionable Cognitive Twins for Decision Making in Manufacturing

72   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Actionable Cognitive Twins are the next generation Digital Twins enhanced with cognitive capabilities through a knowledge graph and artificial intelligence models that provide insights and decision-making options to the users. The knowledge graph describes the domain-specific knowledge regarding entities and interrelationships related to a manufacturing setting. It also contains information on possible decision-making options that can assist decision-makers, such as planners or logisticians. In this paper, we propose a knowledge graph modeling approach to construct actionable cognitive twins for capturing specific knowledge related to demand forecasting and production planning in a manufacturing plant. The knowledge graph provides semantic descriptions and contextualization of the production lines and processes, including data identification and simulation or artificial intelligence algorithms and forecasts used to support them. Such semantics provide ground for inferencing, relating different knowledge types: creative, deductive, definitional, and inductive. To develop the knowledge graph models for describing the use case completely, systems thinking approach is proposed to design and verify the ontology, develop a knowledge graph and build an actionable cognitive twin. Finally, we evaluate our approach in two use cases developed for a European original equipment manufacturer related to the automotive industry as part of the European Horizon 2020 project FACTLOG.



rate research

Read More

Cognitive Twins (CT) are proposed as Digital Twins (DT) with augmented semantic capabilities for identifying the dynamics of virtual model evolution, promoting the understanding of interrelationships between virtual models and enhancing the decision-making based on DT. The CT ensures that assets of Internet of Things (IoT) systems are well-managed and concerns beyond technical stakeholders are addressed during IoT system development. In this paper, a Knowledge Graph (KG) centric framework is proposed to develop CT. Based on the framework, a future tool-chain is proposed to develop the CT for the initiatives of H2020 project FACTLOG. Based on the comparison between DT and CT, we infer the CT is a more comprehensive approach to support IoT-based systems development than DT.
The widespread use of deep neural networks has achieved substantial success in many tasks. However, there still exists a huge gap between the operating mechanism of deep learning models and human-understandable decision making, so that humans cannot fully trust the predictions made by these models. To date, little work has been done on how to align the behaviors of deep learning models with human perception in order to train a human-understandable model. To fill this gap, we propose a new framework to train a deep neural network by incorporating the prior of human perception into the model learning process. Our proposed model mimics the process of perceiving conceptual parts from images and assessing their relative contributions towards the final recognition. The effectiveness of our proposed model is evaluated on two classical visual recognition tasks. The experimental results and analysis confirm our model is able to provide interpretable explanations for its predictions, but also maintain competitive recognition accuracy.
We study the design of autonomous agents that are capable of deceiving outside observers about their intentions while carrying out tasks in stochastic, complex environments. By modeling the agents behavior as a Markov decision process, we consider a setting where the agent aims to reach one of multiple potential goals while deceiving outside observers about its true goal. We propose a novel approach to model observer predictions based on the principle of maximum entropy and to efficiently generate deceptive strategies via linear programming. The proposed approach enables the agent to exhibit a variety of tunable deceptive behaviors while ensuring the satisfaction of probabilistic constraints on the behavior. We evaluate the performance of the proposed approach via comparative user studies and present a case study on the streets of Manhattan, New York, using real travel time distributions.
Machine learning based decision making systems are increasingly affecting humans. An individual can suffer an undesirable outcome under such decision making systems (e.g. denied credit) irrespective of whether the decision is fair or accurate. Individual recourse pertains to the problem of providing an actionable set of changes a person can undertake in order to improve their outcome. We propose a recourse algorithm that models the underlying data distribution or manifold. We then provide a mechanism to generate the smallest set of changes that will improve an individuals outcome. This mechanism can be easily used to provide recourse for any differentiable machine learning based decision making system. Further, the resulting algorithm is shown to be applicable to both supervised classification and causal decision making systems. Our work attempts to fill gaps in existing fairness literature that have primarily focused on discovering and/or algorithmically enforcing fairness constraints on decision making systems. This work also provides an alternative approach to generating counterfactual explanations.
Action selection from many options with few constraints is crucial for improvisation and co-creativity. Our previous work proposed creative arc negotiation to solve this problem, i.e., selecting actions to follow an author-defined `creative arc or trajectory over estimates of novelty, unexpectedness, and quality for potential actions. The CARNIVAL agent architecture demonstrated this approach for playing the Props game from improv theatre in the Robot Improv Circus installation. This article evaluates the creative arc negotiation experience with CARNIVAL through two crowdsourced observer studies and one improviser laboratory study. The studies focus on subjects ability to identify creative arcs in performance and their preference for creative arc negotiation compared to a random selection baseline. Our results show empirically that observers successfully identified creative arcs in performances. Both groups also preferred creative arc negotiation in agent creativity and logical coherence, while observers enjoyed it more too.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا