Do you want to publish a course? Click here

Universal and Flexible Optical Aberration Correction Using Deep-Prior Based Deconvolution

216   0   0.0 ( 0 )
 Added by Xiu Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

High quality imaging usually requires bulky and expensive lenses to compensate geometric and chromatic aberrations. This poses high constraints on the optical hash or low cost applications. Although one can utilize algorithmic reconstruction to remove the artifacts of low-end lenses, the degeneration from optical aberrations is spatially varying and the computation has to trade off efficiency for performance. For example, we need to conduct patch-wise optimization or train a large set of local deep neural networks to achieve high reconstruction performance across the whole image. In this paper, we propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors, thus leading to a universal and flexible optical aberration correction method. Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters, which largely alleviates the time and memory consumption of model learning. The approach is of high efficiency in both training and testing stages. Extensive results verify the promising applications of our proposed approach for compact low-end cameras.

rate research

Read More

Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand and scan time directly depends on the number of acquired k-space samples. Conventional MRI reconstruction methods for fast MRI acquisition mostly relied on different regularizers which represent analytical models of sparsity. However, recent data-driven methods based on deep learning has resulted in promising improvements in image reconstruction algorithms. In this paper, we propose a deep plug-and-play prior framework for parallel MRI reconstruction problems which utilize a deep neural network (DNN) as an advanced denoiser within an iterative method. This, in turn, enables rapid acquisition of MR images with improved image quality. The proposed method was compared with the reconstructions using the clinical gold standard GRAPPA method. Our results with undersampled data demonstrate that our method can deliver considerably higher quality images at high acceleration factors in comparison to clinical gold standard method for MRI reconstructions. Our proposed reconstruction enables an increase in acceleration factor, and a reduction in acquisition time while maintaining high image quality.
Direct reconstruction methods have been developed to estimate parametric images directly from the measured PET sinograms by combining the PET imaging model and tracer kinetics in an integrated framework. Due to limited counts received, signal-to-noise-ratio (SNR) and resolution of parametric images produced by direct reconstruction frameworks are still limited. Recently supervised deep learning methods have been successfully applied to medical imaging denoising/reconstruction when large number of high-quality training labels are available. For static PET imaging, high-quality training labels can be acquired by extending the scanning time. However, this is not feasible for dynamic PET imaging, where the scanning time is already long enough. In this work, we proposed an unsupervised deep learning framework for direct parametric reconstruction from dynamic PET, which was tested on the Patlak model and the relative equilibrium Logan model. The patients anatomical prior image, which is readily available from PET/CT or PET/MR scans, was supplied as the network input to provide a manifold constraint, and also utilized to construct a kernel layer to perform non-local feature denoising. The linear kinetic model was embedded in the network structure as a 1x1 convolution layer. The training objective function was based on the PET statistical model. Evaluations based on dynamic datasets of 18F-FDG and 11C-PiB tracers show that the proposed framework can outperform the traditional and the kernel method-based direct reconstruction methods.
Purpose: Although recent deep energy-based generative models (EBMs) have shown encouraging results in many image generation tasks, how to take advantage of the self-adversarial cogitation in deep EBMs to boost the performance of Magnetic Resonance Imaging (MRI) reconstruction is still desired. Methods: With the successful application of deep learning in a wide range of MRI reconstruction, a line of emerging research involves formulating an optimization-based reconstruction method in the space of a generative model. Leveraging this, a novel regularization strategy is introduced in this article which takes advantage of self-adversarial cogitation of the deep energy-based model. More precisely, we advocate for alternative learning a more powerful energy-based model with maximum likelihood estimation to obtain the deep energy-based information, represented as image prior. Simultaneously, implicit inference with Langevin dynamics is a unique property of re-construction. In contrast to other generative models for reconstruction, the proposed method utilizes deep energy-based information as the image prior in reconstruction to improve the quality of image. Results: Experiment results that imply the proposed technique can obtain remarkable performance in terms of high reconstruction accuracy that is competitive with state-of-the-art methods, and does not suffer from mode collapse. Conclusion: Algorithmically, an iterative approach was presented to strengthen EBM training with the gradient of energy network. The robustness and the reproducibility of the algorithm were also experimentally validated. More importantly, the proposed reconstruction framework can be generalized for most MRI reconstruction scenarios.
The deep learning methods have achieved attractive performance in dynamic MR cine imaging. However, all of these methods are only driven by the sparse prior of MR images, while the important low-rank (LR) prior of dynamic MR cine images is not explored, which limits the further improvements on dynamic MR reconstruction. In this paper, a learned singular value thresholding (Learned-SVT) operation is proposed to explore deep low-rank prior in dynamic MR imaging for obtaining improved reconstruction results. In particular, we come up with two novel and distinct schemes to introduce the learnable low-rank prior into deep network architectures in an unrolling manner and a plug-and-play manner respectively. In the unrolling manner, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed SLR-Net. The SLR-Net is defined over a deep network flow graph, which is unrolled from the iterative procedures in the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a sparse and low-rank based dynamic MRI model. In the plug-and-play manner, we present a plug-and-play LR network module that can be easily embedded into any other dynamic MR neural networks without changing the network paradigm. Experimental results show that both schemes can further improve the state-of-the-art CS methods, such as k-t SLR, and sparsity-driven deep learning-based methods, such as DC-CNN and CRNN, both qualitatively and quantitatively.
Segmenting anatomical structures in medical images has been successfully addressed with deep learning methods for a range of applications. However, this success is heavily dependent on the quality of the image that is being segmented. A commonly neglected point in the medical image analysis community is the vast amount of clinical images that have severe image artefacts due to organ motion, movement of the patient and/or image acquisition related issues. In this paper, we discuss the implications of image motion artefacts on cardiac MR segmentation and compare a variety of approaches for jointly correcting for artefacts and segmenting the cardiac cavity. The method is based on our recently developed joint artefact detection and reconstruction method, which reconstructs high quality MR images from k-space using a joint loss function and essentially converts the artefact correction task to an under-sampled image reconstruction task by enforcing a data consistency term. In this paper, we propose to use a segmentation network coupled with this in an end-to-end framework. Our training optimises three different tasks: 1) image artefact detection, 2) artefact correction and 3) image segmentation. We train the reconstruction network to automatically correct for motion-related artefacts using synthetically corrupted cardiac MR k-space data and uncorrected reconstructed images. Using a test set of 500 2D+time cine MR acquisitions from the UK Biobank data set, we achieve demonstrably good image quality and high segmentation accuracy in the presence of synthetic motion artefacts. We showcase better performance compared to various image correction architectures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا