No Arabic abstract
The deep learning methods have achieved attractive performance in dynamic MR cine imaging. However, all of these methods are only driven by the sparse prior of MR images, while the important low-rank (LR) prior of dynamic MR cine images is not explored, which limits the further improvements on dynamic MR reconstruction. In this paper, a learned singular value thresholding (Learned-SVT) operation is proposed to explore deep low-rank prior in dynamic MR imaging for obtaining improved reconstruction results. In particular, we come up with two novel and distinct schemes to introduce the learnable low-rank prior into deep network architectures in an unrolling manner and a plug-and-play manner respectively. In the unrolling manner, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed SLR-Net. The SLR-Net is defined over a deep network flow graph, which is unrolled from the iterative procedures in the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a sparse and low-rank based dynamic MRI model. In the plug-and-play manner, we present a plug-and-play LR network module that can be easily embedded into any other dynamic MR neural networks without changing the network paradigm. Experimental results show that both schemes can further improve the state-of-the-art CS methods, such as k-t SLR, and sparsity-driven deep learning-based methods, such as DC-CNN and CRNN, both qualitatively and quantitatively.
In dynamic magnetic resonance (MR) imaging, low-rank plus sparse (L+S) decomposition, or robust principal component analysis (PCA), has achieved stunning performance. However, the selection of the parameters of L+S is empirical, and the acceleration rate is limited, which are common failings of iterative compressed sensing MR imaging (CS-MRI) reconstruction methods. Many deep learning approaches have been proposed to address these issues, but few of them use a low-rank prior. In this paper, a model-based low-rank plus sparse network, dubbed L+S-Net, is proposed for dynamic MR reconstruction. In particular, we use an alternating linearized minimization method to solve the optimization problem with low-rank and sparse regularization. Learned soft singular value thresholding is introduced to ensure the clear separation of the L component and S component. Then, the iterative steps are unrolled into a network in which the regularization parameters are learnable. We prove that the proposed L+S-Net achieves global convergence under two standard assumptions. Experiments on retrospective and prospective cardiac cine datasets show that the proposed model outperforms state-of-the-art CS and existing deep learning methods and has great potential for extremely high acceleration factors (up to 24x).
Purpose: To develop a deep learning method on a nonlinear manifold to explore the temporal redundancy of dynamic signals to reconstruct cardiac MRI data from highly undersampled measurements. Methods: Cardiac MR image reconstruction is modeled as general compressed sensing (CS) based optimization on a low-rank tensor manifold. The nonlinear manifold is designed to characterize the temporal correlation of dynamic signals. Iterative procedures can be obtained by solving the optimization model on the manifold, including gradient calculation, projection of the gradient to tangent space, and retraction of the tangent space to the manifold. The iterative procedures on the manifold are unrolled to a neural network, dubbed as Manifold-Net. The Manifold-Net is trained using in vivo data with a retrospective electrocardiogram (ECG)-gated segmented bSSFP sequence. Results: Experimental results at high accelerations demonstrate that the proposed method can obtain improved reconstruction compared with a compressed sensing (CS) method k-t SLR and two state-of-the-art deep learning-based methods, DC-CNN and CRNN. Conclusion: This work represents the first study unrolling the optimization on manifolds into neural networks. Specifically, the designed low-rank manifold provides a new technical route for applying low-rank priors in dynamic MR imaging.
In coded aperture snapshot spectral imaging (CASSI) system, the real-world hyperspectral image (HSI) can be reconstructed from the captured compressive image in a snapshot. Model-based HSI reconstruction methods employed hand-crafted priors to solve the reconstruction problem, but most of which achieved limited success due to the poor representation capability of these hand-crafted priors. Deep learning based methods learning the mappings between the compressive images and the HSIs directly achieved much better results. Yet, it is nontrivial to design a powerful deep network heuristically for achieving satisfied results. In this paper, we propose a novel HSI reconstruction method based on the Maximum a Posterior (MAP) estimation framework using learned Gaussian Scale Mixture (GSM) prior. Different from existing GSM models using hand-crafted scale priors (e.g., the Jeffreys prior), we propose to learn the scale prior through a deep convolutional neural network (DCNN). Furthermore, we also propose to estimate the local means of the GSM models by the DCNN. All the parameters of the MAP estimation algorithm and the DCNN parameters are jointly optimized through end-to-end training. Extensive experimental results on both synthetic and real datasets demonstrate that the proposed method outperforms existing state-of-the-art methods. The code is available at https://see.xidian.edu.cn/faculty/wsdong/Projects/DGSM-SCI.htm.
Snapshot compressive imaging (SCI) aims to record three-dimensional signals via a two-dimensional camera. For the sake of building a fast and accurate SCI recovery algorithm, we incorporate the interpretability of model-based methods and the speed of learning-based ones and present a novel dense deep unfolding network (DUN) with 3D-CNN prior for SCI, where each phase is unrolled from an iteration of Half-Quadratic Splitting (HQS). To better exploit the spatial-temporal correlation among frames and address the problem of information loss between adjacent phases in existing DUNs, we propose to adopt the 3D-CNN prior in our proximal mapping module and develop a novel dense feature map (DFM) strategy, respectively. Besides, in order to promote network robustness, we further propose a dense feature map adaption (DFMA) module to allow inter-phase information to fuse adaptively. All the parameters are learned in an end-to-end fashion. Extensive experiments on simulation data and real data verify the superiority of our method. The source code is available at https://github.com/jianzhangcs/SCI3D.
High spatiotemporal resolution dynamic magnetic resonance imaging (MRI) is a powerful clinical tool for imaging moving structures as well as to reveal and quantify other physical and physiological dynamics. The low speed of MRI necessitates acceleration methods such as deep learning reconstruction from under-sampled data. However, the massive size of many dynamic MRI problems prevents deep learning networks from directly exploiting global temporal relationships. In this work, we show that by applying deep neural networks inside a priori calculated temporal feature spaces, we enable deep learning reconstruction with global temporal modeling even for image sequences with >40,000 frames. One proposed variation of our approach using dilated multi-level Densely Connected Network (mDCN) speeds up feature space coordinate calculation by 3000x compared to conventional iterative methods, from 20 minutes to 0.39 seconds. Thus, the combination of low-rank tensor and deep learning models not only makes large-scale dynamic MRI feasible but also practical for routine clinical application.