Do you want to publish a course? Click here

Fluorescence-Detected Mid-Infrared Photothermal Microscopy

68   0   0.0 ( 0 )
 Added by Minghe Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate instrumentation and methods to enable fluorescence-detected photothermal infrared (F-PTIR) microscopy, then demonstrate the utility of F-PTIR to characterize the composition within phase-separated domains of model amorphous solid dispersions (ASDs) induced by water sorption. In F-PTIR, temperature-dependent changes in fluorescence quantum efficiency are shown to sensitively report on highly localized absorption of mid-infrared radiation. The spatial resolution with which infrared spectroscopy can be performed is dictated by fluorescence microscopy, rather than the infrared wavelength. Following proof of concept F-PTIR demonstration on model systems of polyethylene glycol (PEG) and silica gel, F-PTIR enabled the characterization of chemical composition within inhomogeneous ritonavir / polyvinylpyrrolidone-vinyl acetate (PVPVA) amorphous dispersions. Phase separation is implicated in the observation of critical behaviors in ASD dissolution kinetics, with the results of F-PTIR supporting the formation of phase-separated drug-rich domains upon water absorption in spin-cast films.



rate research

Read More

Mid-infrared photothermal microscopy is a new chemical imaging technology in which a visible beam senses the photothermal effect induced by a pulsed infrared laser. This technology provides infrared spectroscopic information at sub-micron spatial resolution and enables infrared spectroscopy and imaging of living cells and organisms. Yet, current mid-infrared photothermal imaging sensitivity suffers from a weak dependance of scattering on temperature and the image quality is vulnerable to the speckles caused by scattering. Here, we present a novel version of mid-infrared photothermal microscopy in which thermo-sensitive fluorescent probes are harnessed to sense the mid-infrared photothermal effect. The fluorescence intensity can be modulated at the level of 1% per Kelvin, which is 100 times larger than the modulation of scattering intensity. In addition, fluorescence emission is free of speckles, thus much improving the image quality. Moreover, fluorophores can target specific organelles or biomolecules, thus augmenting the specificity of photothermal imaging. Spectral fidelity is confirmed through fingerprinting a single bacterium. Finally, the photobleaching issue is successfully addressed through the development of a wide-field fluorescence-enhanced mid-infrared photothermal microscope which allows video rate bond-selective imaging of biological specimens.
Mid-infrared photothermal (MIP) microscopy has been a promising label-free chemical imaging technique for functional characterization of specimens owing to its enhanced spatial resolution and high specificity. Recently developed wide-field MIP imaging modalities have drastically improved speed and enabled high-throughput imaging of micron-scale subjects. However, the weakly scattered signal from sub-wavelength particles becomes indistinguishable from the shot-noise as a consequence of the strong background light, leading to limited sensitivity. Here, we demonstrate background-suppressed chemical fingerprinting at a single nanoparticle level by selectively attenuating the reflected light through pupil engineering in the collection path. Our technique provides over three orders of magnitude background suppression by quasi-darkfield illumination in epi-configuration without sacrificing lateral resolution. We demonstrate 6-fold signal-to-background noise ratio improvement, allowing for simultaneous detection and discrimination of hundreds of nanoparticles across a field of view of 70 um x 70 um. A comprehensive theoretical framework for photothermal image formation is provided and experimentally validated with 300 and 500~nm PMMA beads. The versatility and utility of our technique are demonstrated via hyperspectral dark-field MIP imaging of S. aureus and E. coli bacteria.
We theoretically investigate the plasmonic heating of graphene-based systems under the mid-infrared laser irradiation, where periodic arrays of graphene plasmonic resonators are placed on dielectric thin films. Optical resonances are sensitive to structural parameters and the number of graphene layers. Under mid-infrared laser irradiation, the steady-state temperature gradients are calculated. We find that graphene plasmons significantly enhance the confinement of electromagnetic fields in the system and lead to a large temperature rise compared to the case without graphene. The correlations between temperature change and the optical power, laser spot, and thermal conductivity of dielectric layer in these systems are discussed. Our numerical results are in accordance with experiments.
Quantum imaging with undetected photons (QIUP) has recently emerged as a new powerful imaging tool. Exploiting the spatial entanglement of photon pairs, it allows decoupling of the sensing and detection wavelengths, facilitating imaging in otherwise challenging spectral regions with mature silicon-based detection technology. All existing implementations of QIUP have so far utilised the momentum correlations within the biphoton state. Here, for the first time, we implement and examine theoretically and numerically the complementary scenario - utilising the tight position correlations formed within photon pair at birth. This image plane arrangement facilitates high resolution imaging with comparative experimental ease, and we experimentally show resolutions below 10 $mu$m at a sensing wavelength of 3.7 $mu$m. Moreover, imaging a slice of mouse heart tissue at the mid-IR to reveal morphological features on the cellular level, we further demonstrate the viability of the technique for the life sciences. These results offer new perspectives on the capabilities of QIUP for label-free wide-field microscopy, enabling new real-world applications in biomedical as well as industrial imaging at inaccessible wavelengths.
Owing to its capacity for unique (bio)-chemical specificity, microscopy withmid-IR illumination holds tremendous promise for a wide range of biomedical and industrial applications. The primary limitation, however, remains detection; with current mid-IR detection technology often marrying inferior technical capabilities with prohibitive costs. This has lead to approaches that shift detection towavelengths into the visible regime, where vastly superior silicon-based cameratechnology is available. Here, we experimentally show how nonlinear interferometry with entangled light can provide a powerful tool for mid-IR microscopy, while only requiring near-infrared detection with a standard CMOS camera. In this proof-of-principle implementation, we demonstrate intensity imaging overa broad wavelength range covering 3.4-4.3um and demonstrate a spatial resolution of 35um for images containing 650 resolved elements. Moreover, we demonstrate our technique is fit for purpose, acquiring microscopic images of biological tissue samples in the mid-IR. These results open a new perspective for potential relevance of quantum imaging techniques in the life sciences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا