We present a robust control framework for time-critical systems in which satisfying real-time constraints is of utmost importance for the safety of the system. Signal Temporal Logic (STL) provides a formal means to express a variety of real-time constraints over signals and is suited for planning and control purposes as it allows us to reason about the time robustness of such constraints. The time robustness of STL particularly quantifies the extent to which timing uncertainties can be tolerated without violating real-time specifications. In this paper, we first pose a control problem in which we aim to find an optimal input sequence to a control system that maximizes the time robustness of an STL constraint. We then propose a Mixed Integer Linear Program (MILP) encoding and provide correctness guarantees and a complexity analysis of the encoding. We also show in two case studies that maximizing STL time robustness allows to account for timing uncertainties of the underlying control system.
This paper presents a control strategy based on a new notion of time-varying fixed-time convergent control barrier functions (TFCBFs) for a class of coupled multi-agent systems under signal temporal logic (STL) tasks. In this framework, each agent is assigned a local STL task regradless of the tasks of other agents. Each task may be dependent on the behavior of other agents which may cause conflicts on the satisfaction of all tasks. Our approach finds a robust solution to guarantee the fixed-time satisfaction of STL tasks in a least violating way and independent of the agents initial condition in the presence of undesired violation effects of the neighbor agents. Particularly, the robust performance of the task satisfactions can be adjusted in a user-specified way.
This paper studies the robust satisfiability check and online control synthesis problems for uncertain discrete-time systems subject to signal temporal logic (STL) specifications. Different from existing techniques, this work proposes an approach based on STL, reachability analysis, and temporal logic trees. Firstly, a real-time version of STL semantics and a tube-based temporal logic tree are proposed. We show that such a tree can be constructed from every STL formula. Secondly, using the tube-based temporal logic tree, a sufficient condition is obtained for the robust satisfiability check of the uncertain system. When the underlying system is deterministic, a necessary and sufficient condition for satisfiability is obtained. Thirdly, an online control synthesis algorithm is designed. It is shown that when the STL formula is robustly satisfiable and the initial state of the system belongs to the initial root node of the tube-based temporal logic tree, it is guaranteed that the trajectory generated by the controller satisfies the STL formula. The effectiveness of the proposed approach is verified by an automated car overtaking example.
This paper presents a control strategy based on time-varying fixed-time convergent higher order control barrier functions for a class of leader-follower multi-agent systems under signal temporal logic (STL) tasks. Each agent is assigned a local STL task which may be dependent on the behavior of agents involved in other tasks. In each local task, one agent called the leader has knowledge on the associated tasks and controls the performance of the subgroup involved agents. Our approach finds a robust solution to guarantee the fixed-time satisfaction of STL tasks in a least violating way and independent of the agents initial conditions. In particular, the robust performance of the task satisfaction is based on the knowledge of the leader from the followers and can be adjusted in a user-specified way.
Accounting for more than 40% of global energy consumption, residential and commercial buildings will be key players in any future green energy systems. To fully exploit their potential while ensuring occupant comfort, a robust control scheme is required to handle various uncertainties, such as external weather and occupant behaviour. However, prominent patterns, especially periodicity, are widely seen in most sources of uncertainty. This paper incorporates this correlated structure into the learning model predictive control framework, in order to learn a global optimal robust control scheme for building operations.
Mixed observable Markov decision processes (MOMDPs) are a modeling framework for autonomous systems described by both fully and partially observable states. In this work, we study the problem of synthesizing a control policy for MOMDPs that minimizes the expected time to complete the control task while satisfying syntactically co-safe Linear Temporal Logic (scLTL) specifications. First, we present an exact dynamic programming update to compute the value function. Afterwards, we propose a point-based approximation, which allows us to compute a lower bound of the closed-loop probability of satisfying the specifications. The effectiveness of the proposed approach and comparisons with standard strategies are shown on high-fidelity navigation tasks with partially observable static obstacles.