Do you want to publish a course? Click here

How Decentral Smart Grid Control limits non-Gaussian power grid frequency fluctuations

134   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Frequency fluctuations in power grids, caused by unpredictable renewable energy sources, consumer behavior and trading, need to be balanced to ensure stable grid operation. Standard smart grid solutions to mitigate large frequency excursions are based on centrally collecting data and give rise to security and privacy concerns. Furthermore, control of fluctuations is often tested by employing Gaussian perturbations. Here, we demonstrate that power grid frequency fluctuations are in general non-Gaussian, implying that large excursions are more likely than expected based on Gaussian modeling. We consider real power grid frequency measurements from Continental Europe and compare them to stochastic models and predictions based on Fokker-Planck equations. Furthermore, we review a decentral smart grid control scheme to limit these fluctuations. In particular, we derive a scaling law of how decentralized control actions reduce the magnitude of frequency fluctuations and demonstrate the power of these theoretical predictions using a test grid. Overall, we find that decentral smart grid control may reduce grid frequency excursions due to both Gaussian and non-Gaussian power fluctuations and thus offers an alternative pathway for mitigating fluctuation-induced risks.



rate research

Read More

The grid-forming converter is an important unit in the future power system with more inverter-interfaced generators. However, improving its performance is still a key challenge. This paper proposes a generalized architecture of the grid-forming converter from the view of multivariable feedback control. As a result, many of the existing popular control strategies, i.e., droop control, power synchronization control, virtual synchronous generator control, matching control, dispatchable virtual oscillator control, and their improved forms are unified into a multivariable feedback control transfer matrix working on several linear and nonlinear error signals. Meanwhile, unlike the traditional assumptions of decoupling between AC and DC control, active power and reactive power control, the proposed configuration simultaneously takes all of them into consideration, which therefore can provide better performance. As an example, a new multi-input-multi-output-based grid-forming (MIMO-GFM) control is proposed based on the generalized configuration. To cope with the multivariable feedback, an optimal and structured $H_{infty}$ synthesis is used to design the control parameters. At last, simulation and experimental results show superior performance and robustness of the proposed configuration and control.
Monitoring and modelling the power grid frequency is key to ensuring stability in the electrical power system. Many tools exist to investigate the detailed deterministic dynamics and especially the bulk behaviour of the frequency. However, far less attention has been paid to its stochastic properties, and there is a need for a cohesive framework that couples both short-time scale fluctuations and bulk behaviour. Moreover, commonly assumed uncorrelated stochastic noise is predominantly employed in modelling in energy systems. In this publication, we examine the stochastic properties of six synchronous power-grid frequency recording with high-temporal resolution of the Nordic Grid from September 2013, focusing on the increments of the frequency recordings. We show that these increments follow non-Gaussian statistics and display spatial and temporal correlations. Furthermore, we report two different physical synchronisation phenomena: a very short timescale phase synchronisation ($<2,$s) followed by a slightly larger timescale amplitude synchronisation ($2,$s-$5,$s). Overall, these results provide guidance on how to model fluctuations in power systems.
Electric vehicles (EVs) are an eco-friendly alternative to vehicles with internal combustion engines. Despite their environmental benefits, the massive electricity demand imposed by the anticipated proliferation of EVs could jeopardize the secure and economic operation of the power grid. Hence, proper strategies for charging coordination will be indispensable to the future power grid. Coordinated EV charging schemes can be implemented as centralized, decentralized, and hierarchical systems, with the last two, referred to as distributed charging control systems. This paper reviews the recent literature of distributed charging control schemes, where the computations are distributed across multiple EVs and/or aggregators. First, we categorize optimization problems for EV charging in terms of operational aspects and cost aspects. Then under each category, we provide a comprehensive discussion on algorithms for distributed EV charge scheduling, considering the perspectives of the grid operator, the aggregator, and the EV user. We also discuss how certain algorithms proposed in the literature cope with various uncertainties inherent to distributed EV charging control problems. Finally, we outline several research directions that require further attention.
Stable operation of the electrical power system requires the power grid frequency to stay within strict operational limits. With millions of consumers and thousands of generators connected to a power grid, detailed human-build models can no longer capture the full dynamics of this complex system. Modern machine learning algorithms provide a powerful alternative for system modelling and prediction, but the intrinsic black-box character of many models impedes scientific insights and poses severe security risks. Here, we show how eXplainable AI (XAI) alleviates these problems by revealing critical dependencies and influences on the power grid frequency. We accurately predict frequency stability indicators (such as RoCoF and Nadir) for three major European synchronous areas and identify key features that determine the power grid stability. Load ramps, specific generation ramps but also prices and forecast errors are central to understand and stabilize the power grid.
The Pacific Northwest Smart Grid Demonstration was an electricity grid modernization project conducted in the Northwest U.S. This paper presents the analysis of renewable generation at the Renewable Energy Park located in the City of Ellensburg, WA. The community energy park concept is an intriguing model for community investment in renewable resources,but the lessons in this paper should be considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا