Do you want to publish a course? Click here

Relationship between fitness and heterogeneity in exponentially growing microbial populations

155   0   0.0 ( 0 )
 Added by Andrea De Martino
 Publication date 2021
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Microbial metabolic networks perform the basic function of harvesting energy from nutrients to generate the work and free energy required for survival, growth and replication. The robust physiological outcomes they generate across vastly different organisms in spite of major environmental and genetic differences represent an especially remarkable trait. Most notably, it suggests that metabolic activity in bacteria may follow universal principles, the search for which is a long-standing issue. Most theoretical approaches to modeling metabolism assume that cells optimize specific evolutionarily-motivated objective functions (like their growth rate) under general physico-chemical or regulatory constraints. While conceptually and practically useful in many situations, the idea that certain objectives are optimized is hard to validate in data. Moreover, it is not clear how optimality can be reconciled with the degree of single-cell variability observed within microbial populations. To shed light on these issues, we propose here an inverse modeling framework that connects fitness to variability through the Maximum-Entropy guided inference of metabolic flux distributions from data. While no clear optimization emerges, we find that, as the medium gets richer, Escherichia coli populations slowly approach the theoretically optimal performance defined by minimal reduction of phenotypic variability at given mean growth rate. Inferred flux distributions provide multiple biological insights, including on metabolic reactions that are experimentally inaccessible. These results suggest that bacterial metabolism is crucially shaped by a population-level trade-off between fitness and cell-to-cell heterogeneity.



rate research

Read More

We study a minimal model for the growth of a phenotypically heterogeneous population of cells subject to a fluctuating environment in which they can replicate (by exploiting available resources) and modify their phenotype within a given landscape (thereby exploring novel configurations). The model displays an exploration-exploitation trade-off whose specifics depend on the statistics of the environment. Most notably, the phenotypic distribution corresponding to maximum population fitness (i.e. growth rate) requires a non-zero exploration rate when the magnitude of environmental fluctuations changes randomly over time, while a purely exploitative strategy turns out to be optimal in two-state environments, independently of the statistics of switching times. We obtain analytical insight into the limiting cases of very fast and very slow exploration rates by directly linking population growth to the features of the environment.
In exponentially proliferating populations of microbes, the population typically doubles at a rate less than the average doubling time of a single-cell due to variability at the single-cell level. It is known that the distribution of generation times obtained from a single lineage is, in general, insufficient to determine a populations growth rate. Is there an explicit relationship between observables obtained from a single lineage and the population growth rate? We show that a populations growth rate can be represented in terms of averages over isolated lineages. This lineage representation is related to a large deviation principle that is a generic feature of exponentially proliferating populations. Due to the large deviation structure of growing populations, the number of lineages needed to obtain an accurate estimate of the growth rate depends exponentially on the duration of the lineages, leading to a non-monotonic convergence of the estimate, which we verify in both synthetic and experimental data sets.
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Such optima have been well characterized in several biologically relevant cases over the past decade. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the `capacity) achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N, (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
Understanding the organization of reaction fluxes in cellular metabolism from the stoichiometry and the topology of the underlying biochemical network is a central issue in systems biology. In this task, it is important to devise reasonable approximation schemes that rely on the stoichiometric data only, because full-scale kinetic approaches are computationally affordable only for small networks (e.g. red blood cells, about 50 reactions). Methods commonly employed are based on finding the stationary flux configurations that satisfy mass-balance conditions for metabolites, often coupling them to local optimization rules (e.g. maximization of biomass production) to reduce the size of the solution space to a single point. Such methods have been widely applied and have proven able to reproduce experimental findings for relatively simple organisms in specific conditions. Here we define and study a constraint-based model of cellular metabolism where neither mass balance nor flux stationarity are postulated, and where the relevant flux configurations optimize the global growth of the system. In the case of E. coli, steady flux states are recovered as solutions, though mass-balance conditions are violated for some metabolites, implying a non-zero net production of the latter. Such solutions furthermore turn out to provide the correct statistics of fluxes for the bacterium E. coli in different environments and compare well with the available experimental evidence on individual fluxes. Conserved metabolic pools play a key role in determining growth rate and flux variability. Finally, we are able to connect phenomenological gene essentiality with `frozen fluxes (i.e. fluxes with smaller allowed variability) in E. coli metabolism.
345 - Rick Durrett 2013
In order to analyze data from cancer genome sequencing projects, we need to be able to distinguish causative, or driver, mutations from passenger mutations that have no selective effect. Toward this end, we prove results concerning the frequency of neutural mutations in exponentially growing multitype branching processes that have been widely used in cancer modeling. Our results yield a simple new population genetics result for the site frequency spectrum of a sample from an exponentially growing population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا