No Arabic abstract
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of infected models will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Currently, most existing backdoor attacks adopted the setting of static trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area. In this paper, we revisit this attack paradigm by analyzing trigger characteristics. We demonstrate that this attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training. As such, those attacks are far less effective in the physical world, where the location and appearance of the trigger in the digitized image may be different from that of the one used for training. Moreover, we also discuss how to alleviate such vulnerability. We hope that this work could inspire more explorations on backdoor properties, to help the design of more advanced backdoor attack and defense methods.
Deep neural networks (DNNs) are vulnerable to the emph{backdoor attack}, which intends to embed hidden backdoors in DNNs by poisoning training data. The attacked model behaves normally on benign samples, whereas its prediction will be changed to a particular target label if hidden backdoors are activated. So far, backdoor research has mostly been conducted towards classification tasks. In this paper, we reveal that this threat could also happen in semantic segmentation, which may further endanger many mission-critical applications ($e.g.$, autonomous driving). Except for extending the existing attack paradigm to maliciously manipulate the segmentation models from the image-level, we propose a novel attack paradigm, the emph{fine-grained attack}, where we treat the target label ($i.e.$, annotation) from the object-level instead of the image-level to achieve more sophisticated manipulation. In the annotation of poisoned samples generated by the fine-grained attack, only pixels of specific objects will be labeled with the attacker-specified target class while others are still with their ground-truth ones. Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data. Our method not only provides a new perspective for designing novel attacks but also serves as a strong baseline for improving the robustness of semantic segmentation methods.
Deep neural networks (DNN) have been widely deployed in various applications. However, many researches indicated that DNN is vulnerable to backdoor attacks. The attacker can create a hidden backdoor in target DNN model, and trigger the malicious behaviors by submitting specific backdoor instance. However, almost all the existing backdoor works focused on the digital domain, while few studies investigate the backdoor attacks in real physical world. Restricted to a variety of physical constraints, the performance of backdoor attacks in the real physical world will be severely degraded. In this paper, we propose a robust physical backdoor attack method, PTB (physical transformations for backdoors), to implement the backdoor attacks against deep learning models in the real physical world. Specifically, in the training phase, we perform a series of physical transformations on these injected backdoor instances at each round of model training, so as to simulate various transformations that a backdoor may experience in real world, thus improves its physical robustness. Experimental results on the state-of-the-art face recognition model show that, compared with the backdoor methods that without PTB, the proposed attack method can significantly improve the performance of backdoor attacks in real physical world. Under various complex physical conditions, by injecting only a very small ratio (0.5%) of backdoor instances, the attack success rate of physical backdoor attacks with the PTB method on VGGFace is 82%, while the attack success rate of backdoor attacks without the proposed PTB method is lower than 11%. Meanwhile, the normal performance of the target DNN model has not been affected.
Deep neural networks (DNN) have shown great success in many computer vision applications. However, they are also known to be susceptible to backdoor attacks. When conducting backdoor attacks, most of the existing approaches assume that the targeted DNN is always available, and an attacker can always inject a specific pattern to the training data to further fine-tune the DNN model. However, in practice, such attack may not be feasible as the DNN model is encrypted and only available to the secure enclave. In this paper, we propose a novel black-box backdoor attack technique on face recognition systems, which can be conducted without the knowledge of the targeted DNN model. To be specific, we propose a backdoor attack with a novel color stripe pattern trigger, which can be generated by modulating LED in a specialized waveform. We also use an evolutionary computing strategy to optimize the waveform for backdoor attack. Our backdoor attack can be conducted in a very mild condition: 1) the adversary cannot manipulate the input in an unnatural way (e.g., injecting adversarial noise); 2) the adversary cannot access the training database; 3) the adversary has no knowledge of the training model as well as the training set used by the victim party. We show that the backdoor trigger can be quite effective, where the attack success rate can be up to $88%$ based on our simulation study and up to $40%$ based on our physical-domain study by considering the task of face recognition and verification based on at most three-time attempts during authentication. Finally, we evaluate several state-of-the-art potential defenses towards backdoor attacks, and find that our attack can still be effective. We highlight that our study revealed a new physical backdoor attack, which calls for the attention of the security issue of the existing face recognition/verification techniques.
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of the infected model will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger, while it performs well on benign samples. Currently, most of existing backdoor attacks adopted the setting of emph{static} trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area. In this paper, we revisit this attack paradigm by analyzing the characteristics of the static trigger. We demonstrate that such an attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training. We further explore how to utilize this property for backdoor defense, and discuss how to alleviate such vulnerability of existing attacks.
Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data ($e.g.$, data from the Internet or third-party data company). This raises the question of whether adopting untrusted third-party data can pose a security threat. In this paper, we demonstrate that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data. Specifically, we design a clustering-based attack scheme where poisoned samples from different clusters will contain different triggers ($i.e.$, pre-defined utterances), based on our understanding of verification tasks. The infected models behave normally on benign samples, while attacker-specified unenrolled triggers will successfully pass the verification even if the attacker has no information about the enrolled speaker. We also demonstrate that existing backdoor attacks cannot be directly adopted in attacking speaker verification. Our approach not only provides a new perspective for designing novel attacks, but also serves as a strong baseline for improving the robustness of verification methods. The code for reproducing main results is available at url{https://github.com/zhaitongqing233/Backdoor-attack-against-speaker-verification}.