Do you want to publish a course? Click here

Backdoor Attack against Speaker Verification

165   0   0.0 ( 0 )
 Added by Yiming Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Speaker verification has been widely and successfully adopted in many mission-critical areas for user identification. The training of speaker verification requires a large amount of data, therefore users usually need to adopt third-party data ($e.g.$, data from the Internet or third-party data company). This raises the question of whether adopting untrusted third-party data can pose a security threat. In this paper, we demonstrate that it is possible to inject the hidden backdoor for infecting speaker verification models by poisoning the training data. Specifically, we design a clustering-based attack scheme where poisoned samples from different clusters will contain different triggers ($i.e.$, pre-defined utterances), based on our understanding of verification tasks. The infected models behave normally on benign samples, while attacker-specified unenrolled triggers will successfully pass the verification even if the attacker has no information about the enrolled speaker. We also demonstrate that existing backdoor attacks cannot be directly adopted in attacking speaker verification. Our approach not only provides a new perspective for designing novel attacks, but also serves as a strong baseline for improving the robustness of verification methods. The code for reproducing main results is available at url{https://github.com/zhaitongqing233/Backdoor-attack-against-speaker-verification}.



rate research

Read More

170 - Lun Wang , Zaynah Javed , Xian Wu 2021
Recent research has confirmed the feasibility of backdoor attacks in deep reinforcement learning (RL) systems. However, the existing attacks require the ability to arbitrarily modify an agents observation, constraining the application scope to simple RL systems such as Atari games. In this paper, we migrate backdoor attacks to more complex RL systems involving multiple agents and explore the possibility of triggering the backdoor without directly manipulating the agents observation. As a proof of concept, we demonstrate that an adversary agent can trigger the backdoor of the victim agent with its own action in two-player competitive RL systems. We prototype and evaluate BACKDOORL in four competitive environments. The results show that when the backdoor is activated, the winning rate of the victim drops by 17% to 37% compared to when not activated.
133 - Kaidi Xu , Sijia Liu , Pin-Yu Chen 2020
Although deep neural networks (DNNs) have achieved a great success in various computer vision tasks, it is recently found that they are vulnerable to adversarial attacks. In this paper, we focus on the so-called textit{backdoor attack}, which injects a backdoor trigger to a small portion of training data (also known as data poisoning) such that the trained DNN induces misclassification while facing examples with this trigger. To be specific, we carefully study the effect of both real and synthetic backdoor attacks on the internal response of vanilla and backdoored DNNs through the lens of Gard-CAM. Moreover, we show that the backdoor attack induces a significant bias in neuron activation in terms of the $ell_infty$ norm of an activation map compared to its $ell_1$ and $ell_2$ norm. Spurred by our results, we propose the textit{$ell_infty$-based neuron pruning} to remove the backdoor from the backdoored DNN. Experiments show that our method could effectively decrease the attack success rate, and also hold a high classification accuracy for clean images.
84 - Yiming Li , Yanjie Li , Yalei Lv 2021
Deep neural networks (DNNs) are vulnerable to the emph{backdoor attack}, which intends to embed hidden backdoors in DNNs by poisoning training data. The attacked model behaves normally on benign samples, whereas its prediction will be changed to a particular target label if hidden backdoors are activated. So far, backdoor research has mostly been conducted towards classification tasks. In this paper, we reveal that this threat could also happen in semantic segmentation, which may further endanger many mission-critical applications ($e.g.$, autonomous driving). Except for extending the existing attack paradigm to maliciously manipulate the segmentation models from the image-level, we propose a novel attack paradigm, the emph{fine-grained attack}, where we treat the target label ($i.e.$, annotation) from the object-level instead of the image-level to achieve more sophisticated manipulation. In the annotation of poisoned samples generated by the fine-grained attack, only pixels of specific objects will be labeled with the attacker-specified target class while others are still with their ground-truth ones. Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data. Our method not only provides a new perspective for designing novel attacks but also serves as a strong baseline for improving the robustness of semantic segmentation methods.
In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trust the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning tasks as well.
Voice Processing Systems (VPSes), now widely deployed, have been made significantly more accurate through the application of recent advances in machine learning. However, adversarial machine learning has similarly advanced and has been used to demonstrate that VPSes are vulnerable to the injection of hidden commands - audio obscured by noise that is correctly recognized by a VPS but not by human beings. Such attacks, though, are often highly dependent on white-box knowledge of a specific machine learning model and limited to specific microphones and speakers, making their use across different acoustic hardware platforms (and thus their practicality) limited. In this paper, we break these dependencies and make hidden command attacks more practical through model-agnostic (blackbox) attacks, which exploit knowledge of the signal processing algorithms commonly used by VPSes to generate the data fed into machine learning systems. Specifically, we exploit the fact that multiple source audio samples have similar feature vectors when transformed by acoustic feature extraction algorithms (e.g., FFTs). We develop four classes of perturbations that create unintelligible audio and test them against 12 machine learning models, including 7 proprietary models (e.g., Google Speech API, Bing Speech API, IBM Speech API, Azure Speaker API, etc), and demonstrate successful attacks against all targets. Moreover, we successfully use our maliciously generated audio samples in multiple hardware configurations, demonstrating effectiveness across both models and real systems. In so doing, we demonstrate that domain-specific knowledge of audio signal processing represents a practical means of generating successful hidden voice command attacks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا