Do you want to publish a course? Click here

Noncollinear topological textures in two-dimensional van der Waals materials: From magnetic to polar systems

112   0   0.0 ( 0 )
 Added by Shuai Dong
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In recent years, noncollinear topological textures have long gained increasing research attentions for their high values of both fundamental researches and potential applications. The recent discovery of intrinsic orders in magnetic and polar two-dimensional van der Waals materials provides a new ideal platform for the investigation of noncollinear topological textures. Here, we review the theoretical and experimental progresses on noncollinear topological textures in two-dimensional van der Waals materials in very recent years. During these years, magnetic skyrmions of both Bloch and Neel types have been observed experimentally in a few two-dimensional van der Waals materials and related heterostructures. Concurrently, more theoretic predictions basing on various mechanisms have been reported about different noncollinear topological textures in two-dimensional van der Waals materials, such as skyrmions, bimerons, anti-biskyrmions and skyrmionium, which are still waiting to be confirmed in experiments. Besides, noncollinear topological electric dipole orders have also been predicted in two-dimensional van der Waals materials. Taking advantage of the intrinsic two-dimensional nature and high integratability, the two-dimensional van der Waals materials will play an important role in the investigation on noncollinear topological textures in both magnetic and polar systems.



rate research

Read More

Two-dimensional (2D) van der Waals (vdW) materials show a range of profound physical properties that can be tailored through their incorporation in heterostructures and manipulated with external forces. The recent discovery of long-range ferromagnetic order down to atomic layers provides an additional degree of freedom in engineering 2D materials and their heterostructure devices for spintronics, valleytronics and magnetic tunnel junction switches. Here, using direct imaging by cryo-Lorentz transmission electron microscopy we show that topologically nontrivial magnetic-spin states, skyrmionic bubbles, can be realized in exfoliated insulating 2D vdW Cr2Ge2Te6. Due to the competition between dipolar interactions and uniaxial magnetic anisotropy, hexagonally-packed nanoscale bubble lattices emerge by field cooling with magnetic field applied along the out-of-plane direction. Despite a range of topological spin textures in stripe domains arising due to pair formation and annihilation of Bloch lines, bubble lattices with single chirality are prevalent. Our observation of topologically-nontrivial homochiral skyrmionic bubbles in exfoliated vdW materials provides a new avenue for novel quantum states in atomically-thin insulators for magneto-electronic and quantum devices.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, the family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
85 - Jiaheng Li , Yang Li , Shiqiao Du 2018
The interplay of magnetism and topology is a key research subject in condensed matter physics and material science, which offers great opportunities to explore emerging new physics, like the quantum anomalous Hall (QAH) effect, axion electrodynamics and Majorana fermions. However, these exotic physical effects have rarely been realized in experiment, due to the lacking of suitable working materials. Here we predict that van der Waals layered MnBi$_2$Te$_4$-family materials show two-dimensional (2D) ferromagnetism in the single layer and three-dimensional (3D) $A$-type antiferromagnetism in the bulk, which could serve as a next-generation material platform for the state-of-art research. Remarkably, we predict extremely rich topological quantum effects with outstanding features in an experimentally available material MnBi$_2$Te$_4$, including a 3D antiferromagnetic topological insulator with the long-sought topological axion states, the type-II magnetic Weyl semimetal (WSM) with simply one pair of Weyl points, and the high-temperature intrinsic QAH effect. These striking predictions, if proved experimentally, could profoundly transform future research and technology of topological quantum physics.
141 - Wenyu Xing , Luyi Qiu , Xirui Wang 2019
The recent emergence of 2D van der Waals magnets down to atomic layer thickness provides an exciting platform for exploring quantum magnetism and spintronics applications. The van der Waals nature stabilizes the long-range ferromagnetic order as a result of magnetic anisotropy. Furthermore, giant tunneling magnetoresistance and electrical control of magnetism have been reported. However, the potential of 2D van der Waals magnets for magnonics, magnon-based spintronics, has not been explored yet. Here, we report the experimental observation of long-distance magnon transport in quasi-twodimensional van der Waals antiferromagnet MnPS3, which demonstrates the 2D magnets as promising material candidates for magnonics. As the 2D MnPS3 thickness decreases, a shorter magnon diffusion length is observed, which could be attributed to the surface-impurity-induced magnon scattering. Our results could pave the way for exploring quantum magnonics phenomena and designing future magnonics devices based on 2D van der Waals magnets.
Two-dimensional (2D) MoSi$_2$N$_4$ monolayer is an emerging class of air-stable 2D semiconductor possessing exceptional electrical and mechanical properties. Despite intensive recent research efforts devoted to uncover the material properties of MoSi$_2$N$_4$, the physics of electrical contacts to MoSi$_2$N$_4$ remains largely unexplored thus far. In this work, we study the van der Waals heterostructures composed of MoSi$_2$N$_4$ contacted by graphene and NbS$_2$ monolayers using first-principle density functional theory calculations. We show that the MoSi$_2$N$_4$/NbS$_2$ contact exhibits an ultralow Schottky barrier height (SBH), which is beneficial for nanoelectronics applications. For MoSi$_2$N$_4$/graphene contact, the SBH can be modulated via interlayer distance or via external electric fields, thus opening up an opportunity for reconfigurable and tunable nanoelectronic devices. Our findings provide insights on the physics of 2D electrical contact to MoSi$_2$N$_4$, and shall offer a critical first step towards the design of high-performance electrical contacts to MoSi$_2$N$_4$-based 2D nanodevices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا