No Arabic abstract
The interplay of magnetism and topology is a key research subject in condensed matter physics and material science, which offers great opportunities to explore emerging new physics, like the quantum anomalous Hall (QAH) effect, axion electrodynamics and Majorana fermions. However, these exotic physical effects have rarely been realized in experiment, due to the lacking of suitable working materials. Here we predict that van der Waals layered MnBi$_2$Te$_4$-family materials show two-dimensional (2D) ferromagnetism in the single layer and three-dimensional (3D) $A$-type antiferromagnetism in the bulk, which could serve as a next-generation material platform for the state-of-art research. Remarkably, we predict extremely rich topological quantum effects with outstanding features in an experimentally available material MnBi$_2$Te$_4$, including a 3D antiferromagnetic topological insulator with the long-sought topological axion states, the type-II magnetic Weyl semimetal (WSM) with simply one pair of Weyl points, and the high-temperature intrinsic QAH effect. These striking predictions, if proved experimentally, could profoundly transform future research and technology of topological quantum physics.
Combining robust magnetism, strong spin-orbit coupling and unique thickness-dependent properties of van der Waals crystals could enable new spintronics applications. Here, using density functional theory, we propose the (MnSb$_2$Te$_4$)$cdot$(Sb$_2$Te$_3$)$_n$ family of stoichiometric van der Waals compounds that harbour multiple topologically-nontrivial magnetic phases. In the groundstate, the first three members of the family, i.e. MnSb$_2$Te$_4$, ($n=0$), MnSb$_4$Te$_7$, ($n=1$), and MnSb$_6$Te$_{10}$, ($n=2$), are 3D antiferromagnetic topological insulators (AFMTIs), while for $n geq 3$ a special phase is formed, in which a nontrivial topological order coexists with a partial magnetic disorder in the system of the decoupled 2D ferromagnets, whose magnetizations point randomly along the third direction. Furthermore, due to a weak interlayer exchange coupling, these materials can be field-driven into the FM Weyl semimetal ($n=0$) or FM axion insulator states ($n geq 1$). Finally, in two dimensions we reveal these systems to show intrinsic quantum anomalous Hall and AFM axion insulator states, as well as quantum Hall state, achieved under external magnetic field, but without Landau levels. Our results provide a solid computational proof that MnSb$_2$Te$_4$, is not topologically trivial as was previously believed that opens possibilities of realization of a wealth of topologically-nontrivial states in the (MnSb$_2$Te$_4$)$cdot$(Sb$_2$Te$_3$)$_n$ family.
Topological surface states with intrinsic magnetic ordering in the MnBi$_2$Te$_4$(Bi$_2$Te$_3$)$_n$ compounds have been predicted to host rich topological phenomena including quantized anomalous Hall effect and axion insulator state. Here we use scanning tunneling microscopy to image the surface Dirac fermions in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$. We have determined the energy dispersion and helical spin texture of the surface states through quasiparticle interference patterns far above Dirac energy, which confirms its topological nature. Approaching the Dirac point, the native defects in the MnBi$_2$Te$_4$ septuple layer give rise to resonance states which extend spatially and potentially hinder the detection of a mass gap in the spectra. Our results demonstrate that regulating defects is essential to realize exotic topological states at higher temperatures in these compounds.
Quantum states of matter combining non-trivial topology and magnetism attract a lot of attention nowadays; the special focus is on magnetic topological insulators (MTIs) featuring quantum anomalous Hall and axion insulator phases. Feasibility of many novel phenomena that emph{intrinsic} magnetic TIs may host depends crucially on our ability to engineer and efficiently tune their electronic and magnetic structures. Here, using angle- and spin-resolved photoemission spectroscopy along with emph{ab initio} calculations we report on a large family of intrinsic magnetic TIs in the homologous series of the van der Waals compounds (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_m$ with $m=0, ..., 6$. Magnetic, electronic and, consequently, topological properties of these materials depend strongly on the $m$ value and are thus highly tunable. The antiferromagnetic (AFM) coupling between the neighboring Mn layers strongly weakens on moving from MnBi2Te4 (m=0) to MnBi4Te7 (m=1), changes to ferromagnetic (FM) one in MnBi6Te10 (m=2) and disappears with further increase in m. In this way, the AFM and FM TI states are respectively realized in the $m=0,1$ and $m=2$ cases, while for $m ge 3$ a novel and hitherto-unknown topologically-nontrivial phase arises, in which below the corresponding critical temperature the magnetizations of the non-interacting 2D ferromagnets, formed by the MBT, building blocks, are disordered along the third direction. The variety of intrinsic magnetic TI phases in (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_m$ allows efficient engineering of functional van der Waals heterostructures for topological quantum computation, as well as antiferromagnetic and 2D spintronics.
Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$, the $n=$~1 and 2 members of a modular (Bi$_2$Te$_3$)$_n$(MnBi$_2$Te$_4$) series, which have attracted recent interest as intrinsic magnetic topological insulators. Combining circular dichroic, spin-resolved and photon-energy-dependent ARPES measurements with calculations based on density functional theory, we unveil complex momentum-dependent orbital and spin textures in the surface electronic structure and disentangle topological from trivial surface bands. We find that the Dirac-cone dispersion of the topologial surface state is strongly perturbed by hybridization with valence-band states for Bi$_2$Te$_3$-terminated surfaces but remains preserved for MnBi$_2$Te$_4$-terminated surfaces. Our results firmly establish the topologically non-trivial nature of these magnetic van der Waals materials and indicate that the possibility of realizing a quantized anomalous Hall conductivity depends on surface termination.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, the family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.