Do you want to publish a course? Click here

Attention Head Masking for Inference Time Content Selection in Abstractive Summarization

65   0   0.0 ( 0 )
 Added by Shuyang Cao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

How can we effectively inform content selection in Transformer-based abstractive summarization models? In this work, we present a simple-yet-effective attention head masking technique, which is applied on encoder-decoder attentions to pinpoint salient content at inference time. Using attention head masking, we are able to reveal the relation between encoder-decoder attentions and content selection behaviors of summarization models. We then demonstrate its effectiveness on three document summarization datasets based on both in-domain and cross-domain settings. Importantly, our models outperform prior state-of-the-art models on CNN/Daily Mail and New York Times datasets. Moreover, our inference-time masking technique is also data-efficient, requiring only 20% of the training samples to outperform BART fine-tuned on the full CNN/DailyMail dataset.



rate research

Read More

Recent progress of abstractive text summarization largely relies on large pre-trained sequence-to-sequence Transformer models, which are computationally expensive. This paper aims to distill these large models into smaller ones for faster inference and minimal performance loss. Pseudo-labeling based methods are popular in sequence-to-sequence model distillation. In this paper, we find simply manipulating attention temperatures in Transformers can make pseudo labels easier to learn for student models. Our experiments on three summarization datasets show our proposed method consistently improves over vanilla pseudo-labeling based methods. We also find that both the pseudo labels and summaries produced by our students are shorter and more abstractive. We will make our code and models publicly available.
Summarization based on text extraction is inherently limited, but generation-style abstractive methods have proven challenging to build. In this work, we propose a fully data-driven approach to abstractive sentence summarization. Our method utilizes a local attention-based model that generates each word of the summary conditioned on the input sentence. While the model is structurally simple, it can easily be trained end-to-end and scales to a large amount of training data. The model shows significant performance gains on the DUC-2004 shared task compared with several strong baselines.
We present a new summarization task, generating summaries of novel chapters using summary/chapter pairs from online study guides. This is a harder task than the news summarization task, given the chapter length as well as the extreme paraphrasing and generalization found in the summaries. We focus on extractive summarization, which requires the creation of a gold-standard set of extractive summaries. We present a new metric for aligning reference summary sentences with chapter sentences to create gold extracts and also experiment with different alignment methods. Our experiments demonstrate significant improvement over prior alignment approaches for our task as shown through automatic metrics and a crowd-sourced pyramid analysis. We make our data collection scripts available at https://github.com/manestay/novel-chapter-dataset .
77 - Shuyang Cao , Lu Wang 2021
How to generate summaries of different styles without requiring corpora in the target styles, or training separate models? We present two novel methods that can be deployed during summary decoding on any pre-trained Transformer-based summarization model. (1) Decoder state adjustment instantly modifies decoder final states with externally trained style scorers, to iteratively refine the output against a target style. (2) Word unit prediction constrains the word usage to impose strong lexical control during generation. In experiments of summarizing with simplicity control, automatic evaluation and human judges both find our models producing outputs in simpler languages while still informative. We also generate news headlines with various ideological leanings, which can be distinguished by humans with a reasonable probability.
Despite significant progress in neural abstractive summarization, recent studies have shown that the current models are prone to generating summaries that are unfaithful to the original context. To address the issue, we study contrast candidate generation and selection as a model-agnostic post-processing technique to correct the extrinsic hallucinations (i.e. information not present in the source text) in unfaithful summaries. We learn a discriminative correction model by generating alternative candidate summaries where named entities and quantities in the generated summary are replaced with ones with compatible semantic types from the source document. This model is then used to select the best candidate as the final output summary. Our experiments and analysis across a number of neural summarization systems show that our proposed method is effective in identifying and correcting extrinsic hallucinations. We analyze the typical hallucination phenomenon by different types of neural summarization systems, in hope to provide insights for future work on the direction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا