Do you want to publish a course? Click here

Strategy Synthesis for Partially-known Switched Stochastic Systems

107   0   0.0 ( 0 )
 Added by John Jackson
 Publication date 2021
and research's language is English
 Authors John Jackson




Ask ChatGPT about the research

We present a data-driven framework for strategy synthesis for partially-known switched stochastic systems. The properties of the system are specified using linear temporal logic (LTL) over finite traces (LTLf), which is as expressive as LTL and enables interpretations over finite behaviors. The framework first learns the unknown dynamics via Gaussian process regression. Then, it builds a formal abstraction of the switched system in terms of an uncertain Markov model, namely an Interval Markov Decision Process (IMDP), by accounting for both the stochastic behavior of the system and the uncertainty in the learning step. Then, we synthesize a strategy on the resulting IMDP that maximizes the satisfaction probability of the LTLf specification and is robust against all the uncertainties in the abstraction. This strategy is then refined into a switching strategy for the original stochastic system. We show that this strategy is near-optimal and provide a bound on its distance (error) to the optimal strategy. We experimentally validate our framework on various case studies, including both linear and non-linear switched stochastic systems.



rate research

Read More

We study the synthesis of mode switching protocols for a class of discrete-time switched linear systems in which the mode jumps are governed by Markov decision processes (MDPs). We call such systems MDP-JLS for brevity. Each state of the MDP corresponds to a mode in the switched system. The probabilistic state transitions in the MDP represent the mode transitions. We focus on finding a policy that selects the switching actions at each mode such that the switched system that follows these actions is guaranteed to be stable. Given a policy in the MDP, the considered MDP-JLS reduces to a Markov jump linear system (MJLS). {We consider both mean-square stability and stability with probability one. For mean-square stability, we leverage existing stability conditions for MJLSs and propose efficient semidefinite programming formulations to find a stabilizing policy in the MDP. For stability with probability one, we derive new sufficient conditions and compute a stabilizing policy using linear programming. We also extend the policy synthesis results to MDP-JLS with uncertain mode transition probabilities.
We study the problem of designing interval-valued observers that simultaneously estimate the system state and learn an unknown dynamic model for partially unknown nonlinear systems with dynamic unknown inputs and bounded noise signals. Leveraging affine abstraction methods and the existence of nonlinear decomposition functions, as well as applying our previously developed data-driven function over-approximation/abstraction approach to over-estimate the unknown dynamic model, our proposed observer recursively computes the maximal and minimal elements of the estimate intervals that are proven to contain the true augmented states. Then, using observed output/measurement signals, the observer iteratively shrinks the intervals by eliminating estimates that are not compatible with the measurements. Finally, given new interval estimates, the observer updates the over-approximation of the unknown model dynamics. Moreover, we provide sufficient conditions for uniform boundedness of the sequence of estimate interval widths, i.e., stability of the designed observer, in the form of tractable (mixed-)integer programs with finitely countable feasible sets.
The paper introduces novel methodologies for the identification of coefficients of switched autoregressive and switched autoregressive exogenous linear models. We consider cases which systems outputs are contaminated by possibly large values of noise for the both case of measurement noise in switched autoregressive models and process noise in switched autoregressive exogenous models. It is assumed that only partial information on the probability distribution of the noise is available. Given input-output data, we aim at identifying switched system coefficients and parameters of the distribution of the noise, which are compatible with the collected data. We demonstrate the efficiency of the proposed approach with several academic examples. The method is shown to be extremely effective in the situations where a large number of measurements is available; cases in which previous approaches based on polynomial or mixed-integer optimization cannot be applied due to very large computational burden.
The security in information-flow has become a major concern for cyber-physical systems (CPSs). In this work, we focus on the analysis of an information-flow security property, called opacity. Opacity characterizes the plausible deniability of a systems secret in the presence of a malicious outside intruder. We propose a methodology of checking a notion of opacity, called approximate initial-state opacity, for networks of discrete-time switched systems. Our framework relies on compositional constructions of finite abstractions for networks of switched systems and their so-called approximate initial-state opacity-preserving simulation functions (InitSOPSFs). Those functions characterize how close concrete networks and their finite abstractions are in terms of the satisfaction of approximate initial-state opacity. We show that such InitSOPSFs can be obtained compositionally by assuming some small-gain type conditions and composing so-called local InitSOPSFs constructed for each subsystem separately. Additionally, assuming certain stability property of switched systems, we also provide a technique on constructing their finite abstractions together with the corresponding local InitSOPSFs. Finally, we illustrate the effectiveness of our results through an example.
100 - Zhe Xu , Yichen Zhang 2021
In this paper, we present a provably correct controller synthesis approach for switched stochastic control systems with metric temporal logic (MTL) specifications with provable probabilistic guarantees. We first present the stochastic control bisimulation function for switched stochastic control systems, which bounds the trajectory divergence between the switched stochastic control system and its nominal deterministic control system in a probabilistic fashion. We then develop a method to compute optimal control inputs by solving an optimization problem for the nominal trajectory of the deterministic control system with robustness against initial state variations and stochastic uncertainties. We implement our robust stochastic controller synthesis approach on both a four-bus power system and a nine-bus power system under generation loss disturbances, with MTL specifications expressing requirements for the grid frequency deviations, wind turbine generator rotor speed variations and the power flow constraints at different power lines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا