Do you want to publish a course? Click here

Domain Generalization with MixStyle

87   0   0.0 ( 0 )
 Added by Kaiyang Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Though convolutional neural networks (CNNs) have demonstrated remarkable ability in learning discriminative features, they often generalize poorly to unseen domains. Domain generalization aims to address this problem by learning from a set of source domains a model that is generalizable to any unseen domain. In this paper, a novel approach is proposed based on probabilistically mixing instance-level feature statistics of training samples across source domains. Our method, termed MixStyle, is motivated by the observation that visual domain is closely related to image style (e.g., photo vs.~sketch images). Such style information is captured by the bottom layers of a CNN where our proposed style-mixing takes place. Mixing styles of training instances results in novel domains being synthesized implicitly, which increase the domain diversity of the source domains, and hence the generalizability of the trained model. MixStyle fits into mini-batch training perfectly and is extremely easy to implement. The effectiveness of MixStyle is demonstrated on a wide range of tasks including category classification, instance retrieval and reinforcement learning.



rate research

Read More

Convolutional neural networks (CNNs) often have poor generalization performance under domain shift. One way to improve domain generalization is to collect diverse source data from multiple relevant domains so that a CNN model is allowed to learn more domain-invariant, and hence generalizable representations. In this work, we address domain generalization with MixStyle, a plug-and-play, parameter-free module that is simply inserted to shallow CNN layers and requires no modification to training objectives. Specifically, MixStyle probabilistically mixes feature statistics between instances. This idea is inspired by the observation that visual domains can often be characterized by image styles which are in turn encapsulated within instance-level feature statistics in shallow CNN layers. Therefore, inserting MixStyle modules in effect synthesizes novel domains albeit in an implicit way. MixStyle is not only simple and flexible, but also versatile -- it can be used for problems whereby unlabeled images are available, such as semi-supervised domain generalization and unsupervised domain adaptation, with a simple extension to mix feature statistics between labeled and pseudo-labeled instances. We demonstrate through extensive experiments that MixStyle can significantly boost the out-of-distribution generalization performance across a wide range of tasks including object recognition, instance retrieval, and reinforcement learning.
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domains annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
Generalizing knowledge to unseen domains, where data and labels are unavailable, is crucial for machine learning models. We tackle the domain generalization problem to learn from multiple source domains and generalize to a target domain with unknown statistics. The crucial idea is to extract the underlying invariant features across all the domains. Previous domain generalization approaches mainly focused on learning invariant features and stacking the learned features from each source domain to generalize to a new target domain while ignoring the label information, which will lead to indistinguishable features with an ambiguous classification boundary. For this, one possible solution is to constrain the label-similarity when extracting the invariant features and to take advantage of the label similarities for class-specific cohesion and separation of features across domains. Therefore we adopt optimal transport with Wasserstein distance, which could constrain the class label similarity, for adversarial training and also further deploy a metric learning objective to leverage the label information for achieving distinguishable classification boundary. Empirical results show that our proposed method could outperform most of the baselines. Furthermore, ablation studies also demonstrate the effectiveness of each component of our method.
Domain generalization (DG) aims to help models trained on a set of source domains generalize better on unseen target domains. The performances of current DG methods largely rely on sufficient labeled data, which however are usually costly or unavailable. While unlabeled data are far more accessible, we seek to explore how unsupervised learning can help deep models generalizes across domains. Specifically, we study a novel generalization problem called unsupervised domain generalization, which aims to learn generalizable models with unlabeled data. Furthermore, we propose a Domain-Irrelevant Unsupervised Learning (DIUL) method to cope with the significant and misleading heterogeneity within unlabeled data and severe distribution shifts between source and target data. Surprisingly we observe that DIUL can not only counterbalance the scarcity of labeled data but also further strengthen the generalization ability of models when the labeled data are sufficient. As a pretraining approach, DIUL shows superior to ImageNet pretraining protocol even when the available data are unlabeled and of a greatly smaller amount compared to ImageNet. Extensive experiments clearly demonstrate the effectiveness of our method compared with state-of-the-art unsupervised learning counterparts.
Recently, we have witnessed great progress in the field of medical imaging classification by adopting deep neural networks. However, the recent advanced models still require accessing sufficiently large and representative datasets for training, which is often unfeasible in clinically realistic environments. When trained on limited datasets, the deep neural network is lack of generalization capability, as the trained deep neural network on data within a certain distribution (e.g. the data captured by a certain device vendor or patient population) may not be able to generalize to the data with another distribution. In this paper, we introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification. Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding with a novel linear-dependency regularization term to capture the shareable information among medical data collected from different domains. As a result, the trained neural network is expected to equip with better generalization capability to the unseen medical data. Experimental results on two challenging medical imaging classification tasks indicate that our method can achieve better cross-domain generalization capability compared with state-of-the-art baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا