تستطيع النسيج الفيلامنتي أن يأخذ شكل منشئات مشبكة مثل الحبل في الوسائط غير الخطية مثل البلازما والسوبرفلويد. وتوقع تشكيل مثل هذه المنشئات في الصلبات، مثل خطوط الجريان في السوبركوندوكتور. ومع ذلك، كان الملاحظة لهذه المنشئات من الصعب. هنا، نستخدم المجهر الإلكتروني وطرق العددية للكشف عن منشئات مشبكة من السكايرميونات المغناطيسية في بلورات رقيقة من نوع FeGe B20. وكشفهم يفتح باب التطبيقات لمناظر رئيسية توبولوجية من الحبال الهندسية في الصلبات المغناطيسية.
Filamentary textures can take the form of braided, rope-like superstructures in nonlinear media such as plasmas and superfluids. The formation of similar superstructures in solids has been predicted, for example from flux lines in superconductors. However, their observation has proved challenging. Here, we use electron microscopy and numerical methods to reveal braided superstructures of magnetic skyrmions in thin crystals of B20-type FeGe. Their discovery opens the door to applications of rich topological landscapes of geometric braids in magnetic solids.
Magnetic skyrmion textures are realized mainly in non-centrosymmetric, e.g. chiral or polar, magnets. Extending the field to centrosymmetric bulk materials is a rewarding challenge, where the released helicity / vorticity degree of freedom and higher skyrmion density result in intriguing new properties and enhanced functionality. We report here on the experimental observation of a skyrmion lattice (SkL) phase with large topological Hall effect and an incommensurate helical pitch as small as 2.8 nm in metallic Gd3Ru4Al12, which materializes a breathing kagome lattice of Gadolinium moments. The magnetic structure of several ordered phases, including the SkL, is determined by resonant x-ray diffraction as well as small angle neutron scattering. The SkL and helical phases are also observed directly using Lorentz transmission electron microscopy. Among several competing phases, the SkL is promoted over a low-temperature transverse conical state by thermal fluctuations in an intermediate range of magnetic fields.
We have carried out magnetization, heat capacity, electrical and magnetoresistance measurements (2-300 K) for the polycrystalline form of intermetallic compounds, R2RhSi3 (R= Gd, Tb, and Dy), forming in a AlB2 derived hexagonal structure with a triangular R network. This work was primarily motivated by a revival of interest on Gd2PdSi3 after about two decades in the field of Toplogical Hall Effect due to magnetic skyrmions. We report here that these compounds are characterized by double antiferromagnetic transitions (T_N= 13.5 and 12 K for Gd, 13.5 and 6.5 K for Tb; 6.5 and 2.5 for Dy), but antiferromagnerism seems to be complex. The most notable observations common to all these compounds are: (i) There are many features in the data mimicking those seen for Gd2PdSi3, including the two field-induced changes in isothermal magnetization as though there are two metamagnetic transitions well below T_N. In view of such a resemblance of the properties, we speculate that these Rh-based materials offer a good playground to study toplogical Hall effect in a centrosymmetric structure, with its origin lying in triangular lattice of magnetic R ions; (ii) There is an increasing contribution of electronic scattering with decreasing temperature towards T_N in all cases, similar to Gd2PdSi3, thereby serving as examples for a theoretical prediction for a classical spin-liquid phase in metallic systems due to geometrical frustration.
We report the observation of the skyrmion lattice in the chiral multiferroic insulator Cu2OSeO3 using Cu L3-edge resonant soft x-ray diffraction. We observe the unexpected existence of two distinct skyrmion sublattices that arise from inequivalent Cu sites with chemically identical coordination numbers but different magnetically active orbitals. The skyrmion sublattices are rotated with respect to each other implying a long wavelength modulation of the lattice. The modulation vector could be controlled with an applied magnetic field, associating this Moire-like phase with a continuous phase transition. Our findings will open a new class of science involving manipulation of quantum topological states.
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzyaloshinskii-Moriya interaction. A key working principle of the proposed skyrmion field-effect transistor is a large transverse motion of skyrmion, caused by an effective equilibrium damping-like spin-orbit torque due to spatially inhomogeneous Dzyaloshinskii-Moriya interaction. This large transverse motion can be categorized as the skyrmion Hall effect, but has been unrecognized previously. The propose device is capable of multi-bit operation and Boolean functions, and thus is expected to serve as a low-power logic device based on the magnetic solitons.
We report an experimental study of the emergence of non-trivial topological winding and long-range order across the paramagnetic to skyrmion lattice transition in the transition metal helimagnet MnSi. Combining measurements of the susceptibility with small angle neutron scattering, neutron resonance spin echo spectroscopy and all-electrical microwave spectroscopy, we find evidence of skyrmion textures in the paramagnetic state exceeding $10^3$AA with lifetimes above several 10$^{-9}$s. Our experimental findings establish that the paramagnetic to skyrmion lattice transition in MnSi is well-described by the Landau soft-mode mechanism of weak crystallization, originally proposed in the context of the liquid to crystal transition. As a key aspect of this theoretical model, the modulation-vectors of periodic small amplitude components of the magnetization form triangles that add to zero. In excellent agreement with our experimental findings, these triangles of the modulation-vectors entail the presence of the non-trivial topological winding of skyrmions already in the paramagnetic state of MnSi when approaching the skyrmion lattice transition.