Do you want to publish a course? Click here

speechocean762: An Open-Source Non-native English Speech Corpus For Pronunciation Assessment

123   0   0.0 ( 0 )
 Added by Junbo Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper introduces a new open-source speech corpus named speechocean762 designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children. Five experts annotated each of the utterances at sentence-level, word-level and phoneme-level. A baseline system is released in open source to illustrate the phoneme-level pronunciation assessment workflow on this corpus. This corpus is allowed to be used freely for commercial and non-commercial purposes. It is available for free download from OpenSLR, and the corresponding baseline system is published in the Kaldi speech recognition toolkit.



rate research

Read More

We propose a weakly-supervised model for word-level mispronunciation detection in non-native (L2) English speech. To train this model, phonetically transcribed L2 speech is not required and we only need to mark mispronounced words. The lack of phonetic transcriptions for L2 speech means that the model has to learn only from a weak signal of word-level mispronunciations. Because of that and due to the limited amount of mispronounced L2 speech, the model is more likely to overfit. To limit this risk, we train it in a multi-task setup. In the first task, we estimate the probabilities of word-level mispronunciation. For the second task, we use a phoneme recognizer trained on phonetically transcribed L1 speech that is easily accessible and can be automatically annotated. Compared to state-of-the-art approaches, we improve the accuracy of detecting word-level pronunciation errors in AUC metric by 30% on the GUT Isle Corpus of L2 Polish speakers, and by 21.5% on the Isle Corpus of L2 German and Italian speakers.
Multilingual acoustic models have been successfully applied to low-resource speech recognition. Most existing works have combined many small corpora together and pretrained a multilingual model by sampling from each corpus uniformly. The model is eventually fine-tuned on each target corpus. This approach, however, fails to exploit the relatedness and similarity among corpora in the training set. For example, the target corpus might benefit more from a corpus in the same domain or a corpus from a close language. In this work, we propose a simple but useful sampling strategy to take advantage of this relatedness. We first compute the corpus-level embeddings and estimate the similarity between each corpus. Next, we start training the multilingual model with uniform-sampling from each corpus at first, then we gradually increase the probability to sample from related corpora based on its similarity with the target corpus. Finally, the model would be fine-tuned automatically on the target corpus. Our sampling strategy outperforms the baseline multilingual model on 16 low-resource tasks. Additionally, we demonstrate that our corpus embeddings capture the language and domain information of each corpus.
In our previous work we demonstrated that a single headed attention encoder-decoder model is able to reach state-of-the-art results in conversational speech recognition. In this paper, we further improve the results for both Switchboard 300 and 2000. Through use of an improved optimizer, speaker vector embeddings, and alternative speech representations we reduce the recognition errors of our LSTM system on Switchboard-300 by 4% relative. Compensation of the decoder model with the probability ratio approach allows more efficient integration of an external language model, and we report 5.9% and 11.5% WER on the SWB and CHM parts of Hub500 with very simple LSTM models. Our study also considers the recently proposed conformer, and more advanced self-attention based language models. Overall, the conformer shows similar performance to the LSTM; nevertheless, their combination and decoding with an improved LM reaches a new record on Switchboard-300, 5.0% and 10.0% WER on SWB and CHM. Our findings are also confirmed on Switchboard-2000, and a new state of the art is reported, practically reaching the limit of the benchmark.
Speech evaluation is an essential component in computer-assisted language learning (CALL). While speech evaluation on English has been popular, automatic speech scoring on low resource languages remains challenging. Work in this area has focused on monolingual specific designs and handcrafted features stemming from resource-rich languages like English. Such approaches are often difficult to generalize to other languages, especially if we also want to consider suprasegmental qualities such as rhythm. In this work, we examine three different languages that possess distinct rhythm patterns: English (stress-timed), Malay (syllable-timed), and Tamil (mora-timed). We exploit robust feature representations inspired by music processing and vector representation learning. Empirical validations show consistent gains for all three languages when predicting pronunciation, rhythm and intonation performance.
Non-autoregressive (NAR) transformer models have been studied intensively in automatic speech recognition (ASR), and a substantial part of NAR transformer models is to use the casual mask to limit token dependencies. However, the casual mask is designed for the left-to-right decoding process of the non-parallel autoregressive (AR) transformer, which is inappropriate for the parallel NAR transformer since it ignores the right-to-left contexts. Some models are proposed to utilize right-to-left contexts with an extra decoder, but these methods increase the model complexity. To tackle the above problems, we propose a new non-autoregressive transformer with a unified bidirectional decoder (NAT-UBD), which can simultaneously utilize left-to-right and right-to-left contexts. However, direct use of bidirectional contexts will cause information leakage, which means the decoder output can be affected by the character information from the input of the same position. To avoid information leakage, we propose a novel attention mask and modify vanilla queries, keys, and values matrices for NAT-UBD. Experimental results verify that NAT-UBD can achieve character error rates (CERs) of 5.0%/5.5% on the Aishell1 dev/test sets, outperforming all previous NAR transformer models. Moreover, NAT-UBD can run 49.8x faster than the AR transformer baseline when decoding in a single step.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا