Do you want to publish a course? Click here

Two mixed finite element formulations for the weak imposition of the Neumann boundary conditions for the Darcy flow

75   0   0.0 ( 0 )
 Added by Riccardo Puppi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose two different discrete formulations for the weak imposition of the Neumann boundary conditions of the Darcy flow. The Raviart-Thomas mixed finite element on both triangular and quadrilateral meshes is considered for both methods. One is a consistent discretization depending on a weighting parameter scaling as $mathcal O(h^{-1})$, while the other is a penalty-type formulation obtained as the discretization of a perturbation of the original problem and relies on a parameter scaling as $mathcal O(h^{-k-1})$, $k$ being the order of the Raviart-Thomas space. We rigorously prove that both methods are stable and result in optimal convergent numerical schemes with respect to appropriate mesh-dependent norms, although the chosen norms do not scale as the usual $L^2$-norm. However, we are still able to recover the optimal a priori $L^2$-error estimates for the velocity field, respectively, for high-order and the lowest-order Raviart-Thomas discretizations, for the first and second numerical schemes. Finally, some numerical examples validating the theory are exhibited.



rate research

Read More

Fourth-order differential equations play an important role in many applications in science and engineering. In this paper, we present a three-field mixed finite-element formulation for fourth-order problems, with a focus on the effective treatment of the different boundary conditions that arise naturally in a variational formulation. Our formulation is based on introducing the gradient of the solution as an explicit variable, constrained using a Lagrange multiplier. The essential boundary conditions are enforced weakly, using Nitsches method where required. As a result, the problem is rewritten as a saddle-point system, requiring analysis of the resulting finite-element discretization and the construction of optimal linear solvers. Here, we discuss the analysis of the well-posedness and accuracy of the finite-element formulation. Moreover, we develop monolithic multigrid solvers for the resulting linear systems. Two and three-dimensional numerical results are presented to demonstrate the accuracy of the discretization and efficiency of the multigrid solvers proposed.
In this article, global stabilization results for the two dimensional (2D) viscous Burgers equation, that is, convergence of unsteady solution to its constant steady state solution with any initial data, are established using a nonlinear Neumann boundary feedback control law. Then, applying $C^0$-conforming finite element method in spatial direction, optimal error estimates in $L^infty(L^2)$ and in $L^infty(H^1)$- norms for the state variable and convergence result for the boundary feedback control law are derived. All the results preserve exponential stabilization property. Finally, several numerical experiments are conducted to confirm our theoretical findings.
This paper studies a model of two-phase flow with an immersed material viscous interface and a finite element method for numerical solution of the resulting system of PDEs. The interaction between the bulk and surface media is characterized by no-penetration and slip with friction interface conditions. The system is shown to be dissipative and a model stationary problem is proved to be well-posed. The finite element method applied in this paper belongs to a family of unfitted discretizations. The performance of the method when model and discretization parameters vary is assessed. Moreover, an iterative procedure based on the splitting of the system into bulk and surface problems is introduced and studied numerically.
119 - Erik Burman , Johnny Guzman 2020
We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection--diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank-Nicolson method. Both the convection term and the associated stabilisation are treated explicitly using an extrapolated approximate solution. We prove stability of the method and the $tau^2 + h^{p+{frac12}}$ error estimates for the $L^2$-norm under either the standard hyperbolic CFL condition, when piecewise affine ($p=1$) approximation is used, or in the case of finite element approximation of order $p ge 1$, a stronger, so-called $4/3$-CFL, i.e. $tau leq C h^{4/3}$. The theory is illustrated with some numerical examples.
82 - Haoran Liu , Michael Neilan , 2021
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressure space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا