Do you want to publish a course? Click here

Cascades between light and heavy fermions in the normal state of magic angle twisted bilayer graphene

136   0   0.0 ( 0 )
 Added by Jian Kang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a framework for understanding the recently observed cascade transitions and the Landau level degeneracies at every integer filling of twisted bilayer graphene. The Coulomb interaction projected onto narrow bands causes the charged excitations at an integer filling to disperse, forming new bands. If the excitation moves the filling away from the charge neutrality point, then it has a band minimum at the moire Brillouin zone center with a small mass that compares well with the experiment; if towards the charge neutrality point, then it has a much larger mass and a higher degeneracy. At a non-zero density away from an integer filling the excitations interact. The system on the small mass side has a large bandwidth and forms a Fermi liquid. On the large mass side the bandwidth is narrow, the compressibility is negative and the Fermi liquid is likely unstable. This explains the observed sawtooth features in compressibility, the Landau fans pointing away from charge neutrality as well as their degeneracies. By providing a description of the charge itineracy in the normal state this framework sets the stage for superconductivity at lower temperatures.



rate research

Read More

Moire systems displaying flat bands have emerged as novel platforms to study correlated electron phenomena. Insulating and superconducting states appear upon doping magic angle twisted bilayer graphene (TBG), and there is evidence of correlation induced effects at the charge neutrality point (CNP) which could originate from spontaneous symmetry breaking. Our theoretical calculations show how optical conductivity measurements can distinguish different symmetry breaking states, and reveal the nature of the correlated states. In the specific case of nematic order, which breaks the discrete rotational symmetry of the lattice, we find that the Dirac cones are displaced, not only in momentum space but also in energy, inducing finite Drude weight at the CNP. We also show that the sign of the dc conductivity anisotropy induced by a nematic order depends on the degree of lattice relaxation, the doping and the nature of the symmetry breaking.
We present a systematic study of the low-energy collective modes for different insulating states at integer fillings in twisted bilayer graphene. In particular, we provide a simple counting rule for the total number of soft modes, and analyze their energies and symmetry quantum numbers in detail. To study the soft mode spectra, we employ time dependent Hartree-Fock whose results are reproduced analytically via an effective sigma model description. We find two different types of low-energy modes - (i) approximate Goldstone modes associated with breaking an enlarged U(4)$times$U(4) symmetry and, surprisingly, a set of (ii) nematic modes with non-zero angular momentum under three-fold rotation. The modes of type (i) include true gapless Goldstone modes associated with exact symmetries in addition to gapped pseudo-Goldstone modes associated with approximate symmetries. While the modes of type (ii) are always gapped, we show that their gap decreases as the Berry curvature grows more concentrated. For realistic parameter values, the gapped soft modes of both types have comparable gaps of only a few meV, and lie completely inside the mean-field bandgap. The entire set of soft modes emerge as Goldstone modes of a different idealized model in which Berry flux is limited to a solenoid, which enjoys an enlarged U(8) symmetry. Furthermore, we discuss the number of Goldstone modes for each symmetry-broken state, distinguishing the linearly vs quadratically dispersing modes. Finally, we present a general symmetry analysis of the soft modes for all possible insulating Slater determinant states at integer fillings that preserve translation symmetry, independent of the energetic details. The resulting soft mode degeneracies and symmetry quantum numbers provide a fingerprint of the different insulting states enabling their experimental identification from a measurement of their soft modes.
The electronic properties of twisted bilayer graphene (TBG) can be dramatically different from those of a single graphene layer, in particular when the two layers are rotated relative to each other by a small angle. TBG has recently attracted a great deal of interest, sparked by the discovery of correlated insulating and superconducting states, for twist angle $theta$ close to a so-called magic angle $approx 1.1{deg}$. In this work, we unveil, via near-field optical microscopy, a collective plasmon mode in charge-neutral TBG near the magic angle, which is dramatically different from the ordinary single-layer graphene intraband plasmon. In selected regions of our samples, we find a gapped collective mode with linear dispersion, akin to the bulk magnetoplasmons of a two-dimensional (2D) electron gas. We interpret these as interband plasmons and associate those with the optical transitions between quasi-localized states originating from the moire superlattice. Surprisingly, we find a higher plasmon group velocity than expected, which implies an enhanced strength of the corresponding optical transition. This points to a weaker interlayer coupling in the AA regions. These intriguing optical properties offer new insights, complementary to other techniques, on the carrier dynamics in this novel quantum electron system.
Magic-angle twisted bilayer graphene (MATBG) exhibits a range of correlated phenomena that originate from strong electron-electron interactions. These interactions make the Fermi surface highly susceptible to reconstruction when $ pm 1, pm 2, pm 3$ electrons occupy each moir e unit cell and lead to the formation of correlated insulating, superconducting and ferromagnetic phases. While some phases have been shown to carry a non-zero Chern number, the local microscopic properties and topological character of many other phases remain elusive. Here we introduce a set of novel techniques hinging on scanning tunneling microscopy (STM) to map out topological phases in MATBG that emerge in finite magnetic field. By following the evolution of the local density of states (LDOS) at the Fermi level with electrostatic doping and magnetic field, we visualize a local Landau fan diagram that enables us to directly assign Chern numbers to all observed phases. We uncover the existence of six topological phases emanating from integer fillings in finite fields and whose origin relates to a cascade of symmetry-breaking transitions driven by correlations. The spatially resolved and electron-density-tuned LDOS maps further reveal that these topological phases can form only in a small range of twist angles around the magic-angle value. Both the microscopic origin and extreme sensitivity to twist angle differentiate these topological phases from the Landau levels observed near charge neutrality. Moreover, we observe that even the charge-neutrality Landau spectrum taken at low fields is considerably modified by interactions and exhibits an unexpected splitting between zero Landau levels that can be as large as ${sim },3-5$ meV. Our results show how strong electronic interactions affect the band structure of MATBG and lead to the formation of correlation-enabled topological phases.
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the superconducting state with a gate voltage opened up intriguing prospects for novel device functionality. Here we present the first demonstration of a device based on the interplay between two distinct phases in adjustable regions of a single magic-angle twisted bilayer graphene crystal. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable DC and AC Josephson effects. We show that superconductivity is induced in different electronic bands and describe the junction behaviour in terms of these bands, taking in consideration interface effects as well. Shapiro steps, a hallmark of the AC Josephson effect and therefore the formation of a Josephson junction, are observed. This work is an initial step towards devices where separate gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics and quantum information technology as well as in studies exploring the nature of the superconducting state in magic-angle twisted bilayer graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا