No Arabic abstract
To improve the security and robustness of autonomous driving models, this paper presents SMET, a scenariobased metamorphic testing tool for autonomous driving models. The metamorphic relationship is divided into three dimensions (time, space, and event) and demonstrates its effectiveness through case studies in two types of autonomous driving models with different outputs.Experimental results show that this tool can well detect potential defects of the autonomous driving model, and complex scenes are more effective than simple scenes.
We develop optimal control strategies for Autonomous Vehicles (AVs) that are required to meet complex specifications imposed by traffic laws and cultural expectations of reasonable driving behavior. We formulate these specifications as rules, and specify their priorities by constructing a priority structure. We propose a recursive framework, in which the satisfaction of the rules in the priority structure are iteratively relaxed based on their priorities. Central to this framework is an optimal control problem, where convergence to desired states is achieved using Control Lyapunov Functions (CLFs), and safety is enforced through Control Barrier Functions (CBFs). We also show how the proposed framework can be used for after-the-fact, pass / fail evaluation of trajectories - a given trajectory is rejected if we can find a controller producing a trajectory that leads to less violation of the rule priority structure. We present case studies with multiple driving scenarios to demonstrate the effectiveness of the proposed framework.
We develop optimal control strategies for autonomous vehicles (AVs) that are required to meet complex specifications imposed as rules of the road (ROTR) and locally specific cultural expectations of reasonable driving behavior. We formulate these specifications as rules, and specify their priorities by constructing a priority structure, called underline{T}otal underline{OR}der over eunderline{Q}uivalence classes (TORQ). We propose a recursive framework, in which the satisfaction of the rules in the priority structure are iteratively relaxed in reverse order of priority. Central to this framework is an optimal control problem, where convergence to desired states is achieved using Control Lyapunov Functions (CLFs) and clearance with other road users is enforced through Control Barrier Functions (CBFs). We present offline and online approaches to this problem. In the latter, the AV has limited sensing range that affects the activation of the rules, and the control is generated using a receding horizon (Model Predictive Control, MPC) approach. We also show how the offline method can be used for after-the-fact (offline) pass/fail evaluation of trajectories - a given trajectory is rejected if we can find a controller producing a trajectory that leads to less violation of the rule priority structure. We present case studies with multiple driving scenarios to demonstrate the effectiveness of the algorithms, and to compare the offline and onli
Simulation-based virtual testing has become an essential step to ensure the safety of autonomous driving systems. Testers need to handcraft the virtual driving scenes and configure various environmental settings like surrounding traffic, weather conditions, etc. Due to the huge amount of configuration possibilities, the human efforts are subject to the inefficiency in detecting flaws in industry-class autonomous driving system. This paper proposes a coverage-driven fuzzing technique to automatically generate diverse configuration parameters to form new driving scenes. Experimental results show that our fuzzing method can significantly reduce the cost in deriving new risky scenes from the initial setup designed by testers. We expect automated fuzzing will become a common practice in virtual testing for autonomous driving systems.
LiDAR odometry plays an important role in self-localization and mapping for autonomous navigation, which is usually treated as a scan registration problem. Although having achieved promising performance on KITTI odometry benchmark, the conventional searching tree-based approach still has the difficulty in dealing with the large scale point cloud efficiently. The recent spherical range image-based method enjoys the merits of fast nearest neighbor search by spherical mapping. However, it is not very effective to deal with the ground points nearly parallel to LiDAR beams. To address these issues, we propose a novel efficient LiDAR odometry approach by taking advantage of both non-ground spherical range image and birds-eye-view map for ground points. Moreover, a range adaptive method is introduced to robustly estimate the local surface normal. Additionally, a very fast and memory-efficient model update scheme is proposed to fuse the points and their corresponding normals at different time-stamps. We have conducted extensive experiments on KITTI odometry benchmark, whose promising results demonstrate that our proposed approach is effective.
In this paper, we present ViSTA, a framework for Virtual Scenario-based Testing of Autonomous Vehicles (AV), developed as part of the 2021 IEEE Autonomous Test Driving AI Test Challenge. Scenario-based virtual testing aims to construct specific challenges posed for the AV to overcome, albeit in virtual test environments that may not necessarily resemble the real world. This approach is aimed at identifying specific issues that arise safety concerns before an actual deployment of the AV on the road. In this paper, we describe a comprehensive test case generation approach that facilitates the design of special-purpose scenarios with meaningful parameters to form test cases, both in automated and manual ways, leveraging the strength and weaknesses of either. Furthermore, we describe how to automate the execution of test cases, and analyze the performance of the AV under these test cases.