Do you want to publish a course? Click here

Time-dependent switching of the photon entanglement type using a driven quantum emitter-cavity system

179   0   0.0 ( 0 )
 Added by Tim Seidelmann
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cascaded decay in a four-level quantum emitter is a well established mechanism to generate polarization entangled photon pairs, the building blocks of many applications in quantum technologies. The four most prominent maximally entangled photon pair states are the Bell states. In a typical experiment based on an undriven emitter only one type of Bell state entanglement can be observed in a given polarization basis. Other types of Bell state entanglement in the same basis can be created by continuously driving the system by an external laser. In this work we propose a protocol for time-dependent entanglement switching in a four-level quantum emitter--cavity system that can be operated by changing the external driving strength. By selecting different two-photon resonances between the laser-dressed states, we can actively switch back and forth between the different types of Bell state entanglement in the same basis as well as between entangled and nonentangled photon pairs. This remarkable feature demonstrates the possibility to achieve a controlled, time-dependent manipulation of the entanglement type that could be used in many innovative applications.



rate research

Read More

Bell states are the most prominent maximally entangled photon states. In a typical four-level emitter, like a semiconductor quantum dot, the photon states exhibit only one type of Bell state entanglement. By adding an external driving to the emitter system, also other types of Bell state entanglement are reachable without changing the polarization basis. In this paper, we show under which conditions the different types of entanglement occur and give analytical equations to explain these findings. We further identify special points, where the concurrence, being a measure for the degree of entanglement, drops to zero, while the coherences between the two-photon states stay strong. Results of this work pave the way to achieve a controlled manipulation of the entanglement type in practical devices.
The quantum dynamics of a strongly driven, strongly coupled single-atom-cavity system is studied by evaluating time-dependent second- and third-order correlations of the emitted photons. The coherent energy exchange, first, between the atom and the cavity mode, and second, between the atom-cavity system and the driving laser, is observed. Three-photon detections show an asymmetry in time, a consequence of the breakdown of detailed balance. The results are in good agreement with theory and are a first step towards the control of a quantum trajectory at larger driving strength.
We investigate the photon pumping effect in a topological model consisting of a periodically driven spin-1/2 coupled to a quantum cavity mode out of the adiabatic limit. In the strong-drive adiabatic limit, a quantized frequency conversion of photons is expected as the temporal analog of the Hall current. We numerically establish a novel photon pumping phenomenon in the experimentally accessible nonadiabatic driving regime for a broad region of the parameter space. The photon frequency conversion efficiency exhibits strong fluctuations and high efficiency that can reach up 80% of the quantized value for commensurate frequency combinations. We link the pumping properties to the delocalization of the corresponding Floquet states which display multifractal behavior as the result of hybridization between localized and delocalized sectors. Finally we demonstrate that the quantum coherence properties of the initial state are preserved during the frequency conversion process in both the strong and ultra-weak-drive limit.
Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable nonlinear optical devices operating at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to nanoscale diamond devices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable orbital states and verify optical switching at the single-photon level by using photon correlation measurements. We use Raman transitions to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. Finally, we create entanglement between two SiV centers by detecting indistinguishable Raman photons emitted into a single waveguide. Entanglement is verified using a novel superradiant feature observed in photon correlation measurements, paving the way for the realization of quantum networks.
By coupling a $Lambda$-type quantum emitter to a chiral waveguide, in which the polarization of a photon is locked to its propagation direction, we propose a controllable photon-emitter interface for quantum networks. We show that this chiral system enables the SWAP gate and a hybrid-entangling gate between the emitter and a flying single photon. It also allows deterministic storage and retrieval of single-photon states with high fidelities and efficiencies. In short, this chirally coupled emitter-photon interface can be a critical building block toward a large-scale quantum network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا