No Arabic abstract
Bell states are the most prominent maximally entangled photon states. In a typical four-level emitter, like a semiconductor quantum dot, the photon states exhibit only one type of Bell state entanglement. By adding an external driving to the emitter system, also other types of Bell state entanglement are reachable without changing the polarization basis. In this paper, we show under which conditions the different types of entanglement occur and give analytical equations to explain these findings. We further identify special points, where the concurrence, being a measure for the degree of entanglement, drops to zero, while the coherences between the two-photon states stay strong. Results of this work pave the way to achieve a controlled manipulation of the entanglement type in practical devices.
The cascaded decay in a four-level quantum emitter is a well established mechanism to generate polarization entangled photon pairs, the building blocks of many applications in quantum technologies. The four most prominent maximally entangled photon pair states are the Bell states. In a typical experiment based on an undriven emitter only one type of Bell state entanglement can be observed in a given polarization basis. Other types of Bell state entanglement in the same basis can be created by continuously driving the system by an external laser. In this work we propose a protocol for time-dependent entanglement switching in a four-level quantum emitter--cavity system that can be operated by changing the external driving strength. By selecting different two-photon resonances between the laser-dressed states, we can actively switch back and forth between the different types of Bell state entanglement in the same basis as well as between entangled and nonentangled photon pairs. This remarkable feature demonstrates the possibility to achieve a controlled, time-dependent manipulation of the entanglement type that could be used in many innovative applications.
Universal set of quantum gates are realized from the conduction-band electron spin qubits of quantum dots embedded in a microcavity via two-channel Raman interaction. All of the gate operations are independent of the cavity mode states, emph{i.e.}, insensitive to the thermal cavity field. Individual addressing and effective switch of the cavity mediated interaction are directly possible here. Meanwhile, gate operations also can be carried out in parallel. The simple realization of needed interaction for selective qubits makes current scenario more suitable for scalable quantum computation.
We demonstrate the effect of interference, similar to the Hong-Ou-Mandel effect, for two single-photon pulses by writing them sequentially inside a quantum memory cell in a tripod configuration.
We use a single trapped 40Ca+ ion as a resonant, polarization-sensitive absorber to detect and characterize the entanglement of tunable narrowband photon pairs from a spontaneous parametric down-conversion source. Single-photon absorption is marked by a quantum jump in the ion and heralded by coincident detection of the partner photon. For three polarization basis settings of absorption and detection of the herald, we find maximum coincidences always for orthogonal polarizations. The polarization entanglement is further evidenced by tomographic reconstruction of the biphoton quantum state.
We present the results of theoretical and experimental studies of dispersively coupled (or membrane in the middle) optomechanical systems. We calculate the linear optical properties of a high finesse cavity containing a thin dielectric membrane. We focus on the cavitys transmission, reflection, and finesse as a function of the membranes position along the cavity axis and as a function of its optical loss. We compare these calculations with measurements and find excellent agreement in cavities with empty-cavity finesses in the range 10^4 to 10^5. The imaginary part of the membranes index of refraction is found to be approximately 10^(-4). We calculate the laser cooling performance of this system, with a particular focus on the less-intuitive regime in which photons tunnel through the membrane on a time scale comparable to the membranes period of oscillation. Lastly, we present calculations of quantum non-demolition measurements of the membranes phonon number in the low signal-to-noise regime where the phonon lifetime is comparable to the QND readout time.