No Arabic abstract
TeraHertz (THz) communications are envisioned as a promising technology, owing to its unprecedented multi-GHz bandwidth. In this paper, wideband channel measurement campaigns at 140 GHz and 220 GHz are conducted in indoor scenarios including a meeting room and an office room. Directional antennas are utilized and rotated for resolving the multi-path components (MPCs) in the angular domain. Comparable path loss values are achieved in the 140 and 220 GHz bands. To investigate the large-scale fading characteristics for indoor THz communications, single-band close-in path loss models are developed. To further analyze the dependency on the frequency, two multi-band path loss models are analyzed, i.e., alpha-beta-gamma (ABG) and multi-frequency CI model with a frequency-weighted path loss exponent (CIF), between which the ABG model demonstrates a better fit with the measured data. Moreover, a coherent beam combination that constructively sums the signal amplitudes from various arrival directions can significantly reduce the path loss, in contrast with a non-coherent beam combination.
TeraHertz (THz) communications are envisioned as a promising technology, owing to its unprecedented multi-GHz bandwidth. One fundamental challenge when moving to new spectrum is to understand the science of radio propagation and develop an accurate channel model. In this paper, a wideband channel measurement campaign between 130 GHz and 143 GHz is investigated in a typical meeting room. Directional antennas are utilized and rotated for resolving the multi-path components (MPCs) in the angular domain. With careful system calibration that eliminates system errors and antenna effects, a realistic power delay profile is developed. Furthermore, a combined MPC clustering and matching procedure with ray-tracing techniques is proposed to investigate the cluster behavior and wave propagation of THz signals. In light of the measurement results, physical parameters and insights in the THz indoor channel are comprehensively analyzed, including the line-of-sight path loss, power distributions, temporal and spatial features, and correlations among THz multi-path characteristics. Finally, a hybrid channel model that combines ray-tracing and statistical methods is developed for THz indoor communications. Numerical results demonstrate that the proposed hybrid channel model shows good agreement with the measurement and outperforms the conventional statistical and geometric-based stochastic channel model in terms of the temporal-spatial characteristics.
Millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies are expected to play a vital role in 6G wireless systems and beyond due to the vast available bandwidth of many tens of GHz. This paper presents an indoor 3-D spatial statistical channel model for mmWave and sub-THz frequencies based on extensive radio propagation measurements at 28 and 140 GHz conducted in an indoor office environment from 2014 to 2020. Omnidirectional and directional path loss models and channel statistics such as the number of time clusters, cluster delays, and cluster powers were derived from over 15,000 measured power delay profiles. The resulting channel statistics show that the number of time clusters follows a Poisson distribution and the number of subpaths within each cluster follows a composite exponential distribution for both LOS and NLOS environments at 28 and 140 GHz. This paper proposes a unified indoor statistical channel model for mmWave and sub-Terahertz frequencies following the mathematical framework of the previous outdoor NYUSIM channel models. A corresponding indoor channel simulator is developed, which can recreate 3-D omnidirectional, directional, and multiple input multiple output (MIMO) channels for arbitrary mmWave and sub-THz carrier frequency up to 150 GHz, signal bandwidth, and antenna beamwidth. The presented statistical channel model and simulator will guide future air-interface, beamforming, and transceiver designs for 6G and beyond.
For general memoryless systems, the typical information theoretic solution - when exists - has a single-letter form. This reflects the fact that optimum performance can be approached by a random code (or a random binning scheme), generated using independent and identically distributed copies of some single-letter distribution. Is that the form of the solution of any (information theoretic) problem? In fact, some counter examples are known. The most famous is the two help one problem: Korner and Marton showed that if we want to decode the modulo-two sum of two binary sources from their independent encodings, then linear coding is better than random coding. In this paper we provide another counter example, the doubly-dirty multiple access channel (MAC). Like the Korner-Marton problem, this is a multi-terminal scenario where side information is distributed among several terminals; each transmitter knows part of the channel interference but the receiver is not aware of any part of it. We give an explicit solution for the capacity region of a binary version of the doubly-dirty MAC, demonstrate how the capacity region can be approached using a linear coding scheme, and prove that the best known single-letter region is strictly contained in it. We also state a conjecture regarding a similar rate loss of single letter characterization in the Gaussian case.
Terahertz (THz) communications with multi-GHz bandwidth are envisioned as a key technology for 6G systems. Ultra-massive (UM) MIMO with hybrid beamforming architectures are widely investigated to provide a high array gain to overcome the huge propagation loss. However, most of the existing hybrid beamforming architectures can only utilize the multiplexing offered by the multipath components, i.e., inter-path multiplexing, which is very limited due to the spatially sparse THz channel. In this paper, a widely-spaced multi-subarray (WSMS) hybrid beamforming architecture is proposed, which improves the multiplexing gain by exploiting a new type of intra-path multiplexing provided by the spherical-wave propagation among k widely-spaced subarrays, in addition to the inter-path multiplexing. The resulting multiplexing gain of WSMS architecture is k times of the existing architectures. To harness WSMS hybrid beamforming, a novel design problem is formulated by optimizing the number of subarrays, subarray spacing, and hybrid beamforming matrices to maximize the spectral efficiency, which is decomposed into two subproblems. An optimal closed-form solution is derived for the first hybrid beamforming subproblem, while a dominant-line-of-sight-relaxation algorithm is proposed for the second array configuration subproblem. Extensive simulation results demonstrate that the WSMS architecture and proposed algorithms substantially enhance the spectral efficiency and energy efficiency.
Terahertz frequency bands will likely be used for the next-generation wireless communication systems to provide data rates of hundreds of Gbps or even Tbps because of the wide swaths of unused and unexplored spectrum. This paper presents two outdoor wideband measurement campaigns in downtown Brooklyn (urban microcell environment) in the sub-THz band of 140 GHz with TX-RX separation distance up to 100 m: i) terrestrial urban microcell measurement campaign, and ii) rooftop surrogate satellite and backhaul measurement campaign. Outdoor omnidirectional and directional path loss models for both line-of-sight and non-line-of-sight scenarios, as well as foliage loss (signal attenuation through foliage), are provided at 140 GHz for urban microcell environments. These measurements and models provide an understanding of both the outdoor terrestrial (e.g., 6G cellular and backhaul) and non-terrestrial (e.g., satellite and unmanned aerial vehicle communications) wireless channels, and prove the feasibility of using THz frequency bands for outdoor fixed and mobile cellular communications. This paper can be used for future outdoor wireless system design at frequencies above 100 GHz.