Do you want to publish a course? Click here

Adaptive Configuration of In Situ Lossy Compression for Cosmology Simulations via Fine-Grained Rate-Quality Modeling

81   0   0.0 ( 0 )
 Added by Dingwen Tao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Extreme-scale cosmological simulations have been widely used by todays researchers and scientists on leadership supercomputers. A new generation of error-bounded lossy compressors has been used in workflows to reduce storage requirements and minimize the impact of throughput limitations while saving large snapshots of high-fidelity data for post-hoc analysis. In this paper, we propose to adaptively provide compression configurations to compute partitions of cosmological simulations with newly designed post-analysis aware rate-quality modeling. The contribution is fourfold: (1) We propose a novel adaptive approach to select feasible error bounds for different partitions, showing the possibility and efficiency of adaptively configuring lossy compression for each partition individually. (2) We build models to estimate the overall loss of post-analysis result due to lossy compression and to estimate compression ratio, based on the property of each partition. (3) We develop an efficient optimization guideline to determine the best-fit configuration of error bounds combination in order to maximize the compression ratio under acceptable post-analysis quality loss. (4) Our approach introduces negligible overheads for feature extraction and error-bound optimization for each partition, enabling post-analysis-aware in situ lossy compression for cosmological simulations. Experiments show that our proposed models are highly accurate and reliable. Our fine-grained adaptive configuration approach improves the compression ratio of up to 73% on the tested datasets with the same post-analysis distortion with only 1% performance overhead.

rate research

Read More

As supercomputers continue to grow to exascale, the amount of data that needs to be saved or transmitted is exploding. To this end, many previous works have studied using error-bounded lossy compressors to reduce the data size and improve the I/O performance. However, little work has been done for effectively offloading lossy compression onto FPGA-based SmartNICs to reduce the compression overhead. In this paper, we propose a hardware-algorithm co-design of efficient and adaptive lossy compressor for scientific data on FPGAs (called CEAZ) to accelerate parallel I/O. Our contribution is fourfold: (1) We propose an efficient Huffman coding approach that can adaptively update Huffman codewords online based on codewords generated offline (from a variety of representative scientific datasets). (2) We derive a theoretical analysis to support a precise control of compression ratio under an error-bounded compression mode, enabling accurate offline Huffman codewords generation. This also helps us create a fixed-ratio compression mode for consistent throughput. (3) We develop an efficient compression pipeline by adopting cuSZs dual-quantization algorithm to our hardware use case. (4) We evaluate CEAZ on five real-world datasets with both a single FPGA board and 128 nodes from Bridges-2 supercomputer. Experiments show that CEAZ outperforms the second-best FPGA-based lossy compressor by 2X of throughput and 9.6X of compression ratio. It also improves MPI_File_write and MPI_Gather throughputs by up to 25.8X and 24.8X, respectively.
In the context of lossy compression, Blau & Michaeli (2019) adopt a mathematical notion of perceptual quality and define the information rate-distortion-perception function, generalizing the classical rate-distortion tradeoff. We consider the notion of universal representations in which one may fix an encoder and vary the decoder to achieve any point within a collection of distortion and perception constraints. We prove that the corresponding information-theoretic universal rate-distortion-perception function is operationally achievable in an approximate sense. Under MSE distortion, we show that the entire distortion-perception tradeoff of a Gaussian source can be achieved by a single encoder of the same rate asymptotically. We then characterize the achievable distortion-perception region for a fixed representation in the case of arbitrary distributions, identify conditions under which the aforementioned results continue to hold approximately, and study the case when the rate is not fixed in advance. This motivates the study of practical constructions that are approximately universal across the RDP tradeoff, thereby alleviating the need to design a new encoder for each objective. We provide experimental results on MNIST and SVHN suggesting that on image compression tasks, the operational tradeoffs achieved by machine learning models with a fixed encoder suffer only a small penalty when compared to their variable encoder counterparts.
Error-bounded lossy compression is a critical technique for significantly reducing scientific data volumes. With ever-emerging heterogeneous high-performance computing (HPC) architecture, GPU-accelerated error-bounded compressors (such as cuSZ+ and cuZFP) have been developed. However, they suffer from either low performance or low compression ratios. To this end, we propose cuSZ+ to target both high compression ratios and throughputs. We identify that data sparsity and data smoothness are key factors for high compression throughputs. Our key contributions in this work are fourfold: (1) We propose an efficient compression workflow to adaptively perform run-length encoding and/or variable-length encoding. (2) We derive Lorenzo reconstruction in decompression as multidimensional partial-sum computation and propose a fine-grained Lorenzo reconstruction algorithm for GPU architectures. (3) We carefully optimize each of cuSZ+ kernels by leveraging state-of-the-art CUDA parallel primitives. (4) We evaluate cuSZ+ using seven real-world HPC application datasets on V100 and A100 GPUs. Experiments show cuSZ+ improves the compression throughputs and ratios by up to 18.4X and 5.3X, respectively, over cuSZ on the tested datasets.
200 - Yongtuo Liu , Dan Xu , Sucheng Ren 2021
Existing domain adaptation methods for crowd counting view each crowd image as a whole and reduce domain discrepancies on crowds and backgrounds simultaneously. However, we argue that these methods are suboptimal, as crowds and backgrounds have quite different characteristics and backgrounds may vary dramatically in different crowd scenes (see Fig.~ref{teaser}). This makes crowds not well aligned across domains together with backgrounds in a holistic manner. To this end, we propose to untangle crowds and backgrounds from crowd images and design fine-grained domain adaption methods for crowd counting. Different from other tasks which possess region-based fine-grained annotations (e.g., segments or bounding boxes), crowd counting only annotates one point on each human head, which impedes the implementation of fine-grained adaptation methods. To tackle this issue, we propose a novel and effective schema to learn crowd segmentation from point-level crowd counting annotations in the context of Multiple Instance Learning. We further leverage the derived segments to propose a crowd-aware fine-grained domain adaptation framework for crowd counting, which consists of two novel adaptation modules, i.e., Crowd Region Transfer (CRT) and Crowd Density Alignment (CDA). Specifically, the CRT module is designed to guide crowd features transfer across domains beyond background distractions, and the CDA module dedicates to constraining the target-domain crowd density distributions. Extensive experiments on multiple cross-domain settings (i.e., Synthetic $rightarrow$ Real, Fixed $rightarrow$ Fickle, Normal $rightarrow$ BadWeather) demonstrate the superiority of the proposed method compared with state-of-the-art methods.
Existing uncertainty modeling approaches try to detect an out-of-distribution point from the in-distribution dataset. We extend this argument to detect finer-grained uncertainty that distinguishes between (a). certain points, (b). uncertain points but within the data distribution, and (c). out-of-distribution points. Our method corrects overconfident NN decisions, detects outlier points and learns to say ``I dont know when uncertain about a critical point between the top two predictions. In addition, we provide a mechanism to quantify class distributions overlap in the decision manifold and investigate its implications in model interpretability. Our method is two-step: in the first step, the proposed method builds a class distribution using Kernel Activation Vectors (kav) extracted from the Network. In the second step, the algorithm determines the confidence of a test point by a hierarchical decision rule based on the chi-squared distribution of squared Mahalanobis distances. Our method sits on top of a given Neural Network, requires a single scan of training data to estimate class distribution statistics, and is highly scalable to deep networks and wider pre-softmax layer. As a positive side effect, our method helps to prevent adversarial attacks without requiring any additional training. It is directly achieved when the Softmax layer is substituted by our robust uncertainty layer at the evaluation phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا