Do you want to publish a course? Click here

Universal statistics of waves in a random time-varying medium

74   0   0.0 ( 0 )
 Added by Remi Carminati
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the propagation of waves in a medium in which the wave velocity fluctuates randomly in time. We prove that at long times, the statistical distribution of the wave energy is log-normal, with the average energy growing exponentially. For weak disorder, another regime preexists at shorter times, in which the energy follows a negative exponential distribution, with an average value growing linearly with time. The theory is in perfect agreement with numerical simulations, and applies to different kinds of waves. The existence of such universal statistics bridges the fields of wave propagation in time-disordered and space-disordered media.



rate research

Read More

The time that waves spend inside 1D random media with the possibility of performing Levy walks is experimentally and theoretically studied. The dynamics of quantum and classical wave diffusion has been investigated in canonical disordered systems via the delay time. We show that a wide class of disorder--Levy disorder--leads to strong random fluctuations of the delay time; nevertheless, some statistical properties such as the tail of the distribution and the average of the delay time are insensitive to Levy walks. Our results reveal a universal character of wave propagation that goes beyond standard Brownian wave-diffusion.
107 - A. B. Kolton , K. Laneri 2018
We study extended infection fronts advancing over a spatially uniform susceptible population by solving numerically a diffusive Kermack McKendrick SIR model with a dichotomous spatially random transmission rate, in two dimensions. We find a non-trivial dynamic critical behavior in the mean velocity, in the shape, and in the rough geometry of the displacement field of the infective front as the disorder approaches a threshold value for spatial spreading of the infection.
Anderson localization does not lead to an exponential decay of intensity of an incident wave with the depth inside a strongly disordered three-dimensional medium. Instead, the average intensity is roughly constant in the first half of a disordered slab, sharply drops in a narrow region in the middle of the sample, and then remains low in the second half of the sample. A universal, scale-free spatial distribution of average intensity is found at mobility edges where the intensity exhibits strong sample-to-sample fluctuations. Our numerical simulations allow us to discriminate between two competing local diffusion theories of Anderson localization and to pinpoint a deficiency of the self-consistent theory.
We investigate the scattering of elastic waves off a disordered region described by a one-dimensional random-phase sine-Gordon model. The collective pinning results in an effective static disorder potential with universal and non-Gaussian correlations, acting on propagating waves. We find signatures of the correlations in the wave transmission in a wide frequency range, which covers both the weak and strong localization regimes. Our theory elucidates the dynamics of collectively-pinned phases occurring in any natural or synthetic elastic medium. The latter one is exemplified by a one-dimensional array of Josephson junctions, for which we specify our results. The obtained results provide benchmarks for the array-enabled quantum simulations addressing the dynamics in broader and yet-unexplored domains of individual pinning and quantum Bose glass.
Waves propagating through a weakly scattering random medium show a pronounced branching of the flow accompanied by the formation of freak waves, i.e., extremely intense waves. Theory predicts that this strong fluctuation regime is accompanied by its own fundamental length scale of transport in random media, parametrically different from the mean free path or the localization length. We show numerically how the scintillation index can be used to assess the scaling behavior of the branching length. We report the experimental observation of this scaling using microwave transport experiments in quasi-two-dimensional resonators with randomly distributed weak scatterers. Remarkably, the scaling range extends much further than expected from random caustics statistics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا