Do you want to publish a course? Click here

Metabolic limits on classical information processing by biological cells

67   0   0.0 ( 0 )
 Added by Chris Fields
 Publication date 2021
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

Biological information processing is generally assumed to be classical. Measured cellular energy budgets of both prokaryotes and eukaryotes, however, fall orders of magnitude short of the power required to maintain classical states of protein conformation and localization at the AA, fs scales predicted by single-molecule decoherence calculations and assumed by classical molecular dynamics models. We suggest that decoherence is limited to the immediate surroundings of the cell membrane and of intercompartmental boundaries within the cell, and that bulk cellular biochemistry implements quantum information processing. Detection of Bell-inequality violations in responses to perturbation of recently-separated sister cells would provide a sensitive test of this prediction. If it is correct, modeling both intra- and intercellular communication requires quantum theory.



rate research

Read More

In growing plant cells, parallel ordering of microtubules (MTs) along the inner surface of the cell membrane influences the direction of cell expansion and thereby plant morphology. For correct expansion of organs that primarily grow by elongating, such as roots and stems, MTs must bend in the high-curvature direction along the cylindrically shaped cell membrane in order to form the required circumferential arrays. Computational studies, which have recapitulated the self-organization of these arrays, ignored MT mechanics and assumed MTs follow geodesics of the cell surface. Here, we show, through analysis of a derived Euler-Lagrange equation, that an elastic MT constrained to a cylindrical surface will deflect away from geodesics and toward low curvature directions to minimize bending energy. This occurs when the curvature of the cell surface is relatively high for a given anchor density. In the limit of infinite anchor density, MTs always follow geodesics. We compare our analytical predictions to measured curvatures and anchor densities and find that the regime in which cells are forming these cortical arrays straddles the region of parameter space in which arrays must form under the antagonistic influence of this mechanically induced deflection. Although this introduces a potential obstacle to forming circumferentially orientated arrays that needs to be accounted for in the models, it also raises the question of whether plants use this mechanical phenomenon to regulate array orientation. The model also constitutes an elegant generalization of the classical Euler-bucking instability along with an intrinsic unfolding of the associated pitchfork bifurcation.
Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this paper, we calculated the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculated the mutual information, energy cost, and energy efficiency of an array of these bistable units. We found that the optimal number of units could maximize this arrays energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
The cell cytoskeleton is a striking example of active medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.
Cell-fate transition can be modeled by ordinary differential equations (ODEs) which describe the behavior of several molecules in interaction, and for which each stable equilibrium corresponds to a possible phenotype (or biological trait). In this paper, we focus on simple ODE systems modeling two molecules which each negatively (or positively) regulate the other. It is well-known that such models may lead to monostability or multistability, depending on the selected parameters. However, extensive numerical simulations have led systems biologists to conjecture that in the vast majority of cases, there cannot be more than two stable points. Our main result is a proof of this conjecture. More specifically, we provide a criterion ensuring at most bistability, which is indeed satisfied by most commonly used functions. This includes Hill functions, but also a wide family of convex and sigmoid functions. We also determine which parameters lead to monostability, and which lead to bistability, by developing a more general framework encompassing all our results.
The combination of machine learning and quantum computing has emerged as a promising approach for addressing previously untenable problems. Reservoir computing is an efficient learning paradigm that utilizes nonlinear dynamical systems for temporal information processing, i.e., processing of input sequences to produce output sequences. Here we propose quantum reservoir computing that harnesses complex dissipative quantum dynamics. Our class of quantum reservoirs is universal, in that any nonlinear fading memory map can be approximated arbitrarily closely and uniformly over all inputs by a quantum reservoir from this class. We describe a subclass of the universal class that is readily implementable using quantum gates native to current noisy gate-model quantum computers. Proof-of-principle experiments on remotely accessed cloud-based superconducting quantum computers demonstrate that small and noisy quantum reservoirs can tackle high-order nonlinear temporal tasks. Our theoretical and experimental results pave the path for attractive temporal processing applications of near-term gate-model quantum computers of increasing fidelity but without quantum error correction, signifying the potential of these devices for wider applications including neural modeling, speech recognition and natural language processing, going beyond static classification and regression tasks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا