No Arabic abstract
Our goal is to learn a deep network that, given a small number of images of an object of a given category, reconstructs it in 3D. While several recent works have obtained analogous results using synthetic data or assuming the availability of 2D primitives such as keypoints, we are interested in working with challenging real data and with no manual annotations. We thus focus on learning a model from multiple views of a large collection of object instances. We contribute with a new large dataset of object centric videos suitable for training and benchmarking this class of models. We show that existing techniques leveraging meshes, voxels, or implicit surfaces, which work well for reconstructing isolated objects, fail on this challenging data. Finally, we propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction while obtaining a detailed implicit representation of the object surface and texture, also compensating for the noise in the initial SfM reconstruction that bootstrapped the learning process. Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks and on our novel dataset.
We propose a method to learn image representations from uncurated videos. We combine a supervised loss from off-the-shelf object detectors and self-supervised losses which naturally arise from the video-shot-frame-object hierarchy present in each video. We report competitive results on 19 transfer learning tasks of the Visual Task Adaptation Benchmark (VTAB), and on 8 out-of-distribution-generalization tasks, and discuss the benefits and shortcomings of the proposed approach. In particular, it improves over the baseline on all 18/19 few-shot learning tasks and 8/8 out-of-distribution generalization tasks. Finally, we perform several ablation studies and analyze the impact of the pretrained object detector on the performance across this suite of tasks.
Extracting and predicting object structure and dynamics from videos without supervision is a major challenge in machine learning. To address this challenge, we adopt a keypoint-based image representation and learn a stochastic dynamics model of the keypoints. Future frames are reconstructed from the keypoints and a reference frame. By modeling dynamics in the keypoint coordinate space, we achieve stable learning and avoid compounding of errors in pixel space. Our method improves upon unstructured representations both for pixel-level video prediction and for downstream tasks requiring object-level understanding of motion dynamics. We evaluate our model on diverse datasets: a multi-agent sports dataset, the Human3.6M dataset, and datasets based on continuous control tasks from the DeepMind Control Suite. The spatially structured representation outperforms unstructured representations on a range of motion-related tasks such as object tracking, action recognition and reward prediction.
In the presence of annotated data, deep human pose estimation networks yield impressive performance. Nevertheless, annotating new data is extremely time-consuming, particularly in real-world conditions. Here, we address this by leveraging contrastive self-supervised (CSS) learning to extract rich latent vectors from single-view videos. Instead of simply treating the latent features of nearby frames as positive pairs and those of temporally-distant ones as negative pairs as in other CSS approaches, we explicitly disentangle each latent vector into a time-variant component and a time-invariant one. We then show that applying CSS only to the time-variant features, while also reconstructing the input and encouraging a gradual transition between nearby and away features, yields a rich latent space, well-suited for human pose estimation. Our approach outperforms other unsupervised single-view methods and matches the performance of multi-view techniques.
We propose a method to learn 3D deformable object categories from raw single-view images, without external supervision. The method is based on an autoencoder that factors each input image into depth, albedo, viewpoint and illumination. In order to disentangle these components without supervision, we use the fact that many object categories have, at least in principle, a symmetric structure. We show that reasoning about illumination allows us to exploit the underlying object symmetry even if the appearance is not symmetric due to shading. Furthermore, we model objects that are probably, but not certainly, symmetric by predicting a symmetry probability map, learned end-to-end with the other components of the model. Our experiments show that this method can recover very accurately the 3D shape of human faces, cat faces and cars from single-view images, without any supervision or a prior shape model. On benchmarks, we demonstrate superior accuracy compared to another method that uses supervision at the level of 2D image correspondences.
Crowdsourced 3D CAD models are becoming easily accessible online, and can potentially generate an infinite number of training images for almost any object category.We show that augmenting the training data of contemporary Deep Convolutional Neural Net (DCNN) models with such synthetic data can be effective, especially when real training data is limited or not well matched to the target domain. Most freely available CAD models capture 3D shape but are often missing other low level cues, such as realistic object texture, pose, or background. In a detailed analysis, we use synthetic CAD-rendered images to probe the ability of DCNN to learn without these cues, with surprising findings. In particular, we show that when the DCNN is fine-tuned on the target detection task, it exhibits a large degree of invariance to missing low-level cues, but, when pretrained on generic ImageNet classification, it learns better when the low-level cues are simulated. We show that our synthetic DCNN training approach significantly outperforms previous methods on the PASCAL VOC2007 dataset when learning in the few-shot scenario and improves performance in a domain shift scenario on the Office benchmark.