No Arabic abstract
Standard methods for video recognition use large CNNs designed to capture spatio-temporal data. However, training these models requires a large amount of labeled training data, containing a wide variety of actions, scenes, settings and camera viewpoints. In this paper, we show that current convolutional neural network models are unable to recognize actions from camera viewpoints not present in their training data (i.e., unseen view action recognition). To address this, we develop approaches based on 3D representations and introduce a new geometric convolutional layer that can learn viewpoint invariant representations. Further, we introduce a new, challenging dataset for unseen view recognition and show the approaches ability to learn viewpoint invariant representations.
The need to address the scarcity of task-specific annotated data has resulted in concerted efforts in recent years for specific settings such as zero-shot learning (ZSL) and domain generalization (DG), to separately address the issues of semantic shift and domain shift, respectively. However, real-world applications often do not have constrained settings and necessitate handling unseen classes in unseen domains -- a setting called Zero-shot Domain Generalization, which presents the issues of domain and semantic shifts simultaneously. In this work, we propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains as well as class-specific semantic text-based representations to a common latent space. In particular, our method jointly strives for the following objectives: (i) aligning the multimodal cues from visual and text-based semantic concepts; (ii) partitioning the common latent space according to the domain-agnostic class-level semantic concepts; and (iii) learning a domain invariance w.r.t the visual-semantic joint distribution for generalizing to unseen classes in unseen domains. Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods, with significant gains on difficult domains like quickdraw and sketch.
Recent progress towards designing models that can generalize to unseen domains (i.e domain generalization) or unseen classes (i.e zero-shot learning) has embarked interest towards building models that can tackle both domain-shift and semantic shift simultaneously (i.e zero-shot domain generalization). For models to generalize to unseen classes in unseen domains, it is crucial to learn feature representation that preserves class-level (domain-invariant) as well as domain-specific information. Motivated from the success of generative zero-shot approaches, we propose a feature generative framework integrated with a COntext COnditional Adaptive (COCOA) Batch-Normalization to seamlessly integrate class-level semantic and domain-specific information. The generated visual features better capture the underlying data distribution enabling us to generalize to unseen classes and domains at test-time. We thoroughly evaluate and analyse our approach on established large-scale benchmark - DomainNet and demonstrate promising performance over baselines and state-of-art methods.
In order to learn object segmentation models in videos, conventional methods require a large amount of pixel-wise ground truth annotations. However, collecting such supervised data is time-consuming and labor-intensive. In this paper, we exploit existing annotations in source images and transfer such visual information to segment videos with unseen object categories. Without using any annotations in the target video, we propose a method to jointly mine useful segments and learn feature representations that better adapt to the target frames. The entire process is decomposed into two tasks: 1) solving a submodular function for selecting object-like segments, and 2) learning a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video. We present an iterative update scheme between two tasks to self-learn the final solution for object segmentation. Experimental results on numerous benchmark datasets show that the proposed method performs favorably against the state-of-the-art algorithms.
Explainability and interpretability are two critical aspects of decision support systems. Within computer vision, they are critical in certain tasks related to human behavior analysis such as in health care applications. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of computer vision with an emphasis on looking at people tasks. Specifically, we review and study those mechanisms in the context of first impressions analysis. To the best of our knowledge, this is the first effort in this direction. Additionally, we describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, the evaluation protocol, and summarize the results of the challenge. Finally, derived from our study, we outline research opportunities that we foresee will be decisive in the near future for the development of the explainable computer vision field.
In this paper we address the problem of automatically discovering atomic actions in unsupervised manner from instructional videos. Instructional videos contain complex activities and are a rich source of information for intelligent agents, such as, autonomous robots or virtual assistants, which can, for example, automatically `read the steps from an instructional video and execute them. However, videos are rarely annotated with atomic activities, their boundaries or duration. We present an unsupervised approach to learn atomic actions of structured human tasks from a variety of instructional videos. We propose a sequential stochastic autoregressive model for temporal segmentation of videos, which learns to represent and discover the sequential relationship between different atomic actions of the task, and which provides automatic and unsupervised self-labeling for videos. Our approach outperforms the state-of-the-art unsupervised methods with large margins. We will open source the code.