Do you want to publish a course? Click here

On the relative power of algebraic approximations of graph isomorphism

100   0   0.0 ( 0 )
 Added by Danny Vagnozzi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We compare the capabilities of two approaches to approximating graph isomorphism using linear algebraic methods: the emph{invertible map tests} (introduced by Dawar and Holm) and proof systems with algebraic rules, namely emph{polynomial calculus}, emph{monomial calculus} and emph{Nullstellensatz calculus}. In the case of fields of characteristic zero, these variants are all essentially equivalent to the the Weisfeiler-Leman algorithms. In positive characteristic we show that the invertible map method can simulate the monomial calculus and identify a potential way to extend this to the monomial calculus.



rate research

Read More

We investigate the power of graph isomorphism algorithms based on algebraic reasoning techniques like Grobner basis computation. The idea of these algorithms is to encode two graphs into a system of equations that are satisfiable if and only if if the graphs are isomorphic, and then to (try to) decide satisfiability of the system using, for example, the Grobner basis algorithm. In some cases this can be done in polynomial time, in particular, if the equations admit a bounded degree refutation in an algebraic proof systems such as Nullstellensatz or polynomial calculus. We prove linear lower bounds on the polynomial calculus degree over all fields of characteristic different from 2 and also linear lower bounds for the degree of Positivstellensatz calculus derivations. We compare this approach to recently studied linear and semidefinite programming approaches to isomorphism testing, which are known to be related to the combinatorial Weisfeiler-Lehman algorithm. We exactly characterise the power of the Weisfeiler-Lehman algorithm in terms of an algebraic proof system that lies between degree-k Nullstellensatz and degree-k polynomial calculus.
Given two graphs $G_1$ and $G_2$ on $n$ vertices each, we define a graph $G$ on vertex set $V_1times V_2$ and the edge set as the union of edges of $G_1times bar{G_2}$, $bar{G_1}times G_2$, ${(v,u),(v,u))(|u,uin V_2}$ for each $vin V_1$, and ${((u,v),(u,v))|u,uin V_1}$ for each $vin V_2$. We consider the completely-positive Lovasz $vartheta$ function, i.e., $cpvartheta$ function for $G$. We show that the function evaluates to $n$ whenever $G_1$ and $G_2$ are isomorphic and to less than $n-1/(4n^4)$ when non-isomorphic. Hence this function provides a test for graph isomorphism. We also provide some geometric insight into the feasible region of the completely positive program.
The complexity of graph isomorphism (GraphIso) is a famous unresolved problem in theoretical computer science. For graphs $G$ and $H$, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (ListIso) is NP-complete: for each $u in V(G)$, we are given a list ${mathfrak L}(u) subseteq V(H)$ of possible images of $u$. After 35 years, we revive the study of this problem and consider which results for GraphIso translate to ListIso. We prove the following: 1) When GraphIso is GI-complete for a class of graphs, it translates into NP-completeness of ListIso. 2) Combinatorial algorithms for GraphIso translate into algorithms for ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, bounded genus graphs, and bounded treewidth graphs. 3) Algorithms based on group theory do not translate: ListIso remains NP-complete for cubic colored graphs with sizes of color classes bounded by 8. Also, ListIso allows to classify results for the graph isomorphism problem. Some algorithms are robust and translate to ListIso. A fundamental problem is to construct a combinatorial polynomial-time algorithm for cubic graph isomorphism, avoiding group theory. By the 3rd result, ListIso is NP-hard for them, so no robust algorithm for cubic graph isomorphism exists, unless P = NP.
In this paper we extend and prove in detail the Finite Rank Theorem for connection matrices of graph parameters definable in Monadic Second Order Logic with counting (CMSOL) from B. Godlin, T. Kotek and J.A. Makowsky (2008) and J.A. Makowsky (2009). We demonstrate its vast applicability in simplifying known and new non-definability results of graph properties and finding new non-definability results for graph parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic with the modular counting quantifiers.
The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا