Do you want to publish a course? Click here

Completely Positive formulation of the Graph Isomorphism Problem

124   0   0.0 ( 0 )
 Added by Shashank Mehta
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Given two graphs $G_1$ and $G_2$ on $n$ vertices each, we define a graph $G$ on vertex set $V_1times V_2$ and the edge set as the union of edges of $G_1times bar{G_2}$, $bar{G_1}times G_2$, ${(v,u),(v,u))(|u,uin V_2}$ for each $vin V_1$, and ${((u,v),(u,v))|u,uin V_1}$ for each $vin V_2$. We consider the completely-positive Lovasz $vartheta$ function, i.e., $cpvartheta$ function for $G$. We show that the function evaluates to $n$ whenever $G_1$ and $G_2$ are isomorphic and to less than $n-1/(4n^4)$ when non-isomorphic. Hence this function provides a test for graph isomorphism. We also provide some geometric insight into the feasible region of the completely positive program.



rate research

Read More

The complexity of graph isomorphism (GraphIso) is a famous unresolved problem in theoretical computer science. For graphs $G$ and $H$, it asks whether they are the same up to a relabeling of vertices. In 1981, Lubiw proved that list restricted graph isomorphism (ListIso) is NP-complete: for each $u in V(G)$, we are given a list ${mathfrak L}(u) subseteq V(H)$ of possible images of $u$. After 35 years, we revive the study of this problem and consider which results for GraphIso translate to ListIso. We prove the following: 1) When GraphIso is GI-complete for a class of graphs, it translates into NP-completeness of ListIso. 2) Combinatorial algorithms for GraphIso translate into algorithms for ListIso: for trees, planar graphs, interval graphs, circle graphs, permutation graphs, bounded genus graphs, and bounded treewidth graphs. 3) Algorithms based on group theory do not translate: ListIso remains NP-complete for cubic colored graphs with sizes of color classes bounded by 8. Also, ListIso allows to classify results for the graph isomorphism problem. Some algorithms are robust and translate to ListIso. A fundamental problem is to construct a combinatorial polynomial-time algorithm for cubic graph isomorphism, avoiding group theory. By the 3rd result, ListIso is NP-hard for them, so no robust algorithm for cubic graph isomorphism exists, unless P = NP.
A graph is said to be circular-arc if the vertices can be associated with arcs of a circle so that two vertices are adjacent if and only if the corresponding arcs overlap. It is proved that the isomorphism of circular-arc graphs can be tested by the Weisfeiler-Leman algorithm after individualization of two vertices.
We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, Gamma-circular-arc graphs, proper circular-arc graphs and convex-round graphs.
We compare the capabilities of two approaches to approximating graph isomorphism using linear algebraic methods: the emph{invertible map tests} (introduced by Dawar and Holm) and proof systems with algebraic rules, namely emph{polynomial calculus}, emph{monomial calculus} and emph{Nullstellensatz calculus}. In the case of fields of characteristic zero, these variants are all essentially equivalent to the the Weisfeiler-Leman algorithms. In positive characteristic we show that the invertible map method can simulate the monomial calculus and identify a potential way to extend this to the monomial calculus.
Three new graph invariants are introduced which may be measured from a quantum graph state and form examples of a framework under which other graph invariants can be constructed. Each invariant is based on distinguishing a different number of qubits. This is done by applying alternate measurements to the qubits to be distinguished. The performance of these invariants is evaluated and compared to classical invariants. We verify that the invariants can distinguish all non-isomorphic graphs with 9 or fewer nodes. The invariants have also been applied to `classically hard strongly regular graphs, successfully distinguishing all strongly regular graphs of up to 29 nodes, and preliminarily to weighted graphs. We have found that although it is possible to prepare states with a polynomial number of operations, the average number of preparations required to distinguish non-isomorphic graph states scales exponentially with the number of nodes. We have so far been unable to find operators which reliably compare graphs and reduce the required number of preparations to feasible levels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا