Do you want to publish a course? Click here

Platform for Situated Intelligence

86   0   0.0 ( 0 )
 Added by Dan Bohus
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We introduce Platform for Situated Intelligence, an open-source framework created to support the rapid development and study of multimodal, integrative-AI systems. The framework provides infrastructure for sensing, fusing, and making inferences from temporal streams of data across different modalities, a set of tools that enable visualization and debugging, and an ecosystem of components that encapsulate a variety of perception and processing technologies. These assets jointly provide the means for rapidly constructing and refining multimodal, integrative-AI systems, while retaining the efficiency and performance characteristics required for deployment in open-world settings.



rate research

Read More

Conditionals are useful for modelling, but are not always sufficiently expressive for capturing information accurately. In this paper we make the case for a form of conditional that is situation-based. These conditionals are more expressive than classical conditionals, are general enough to be used in several application domains, and are able to distinguish, for example, between expectations and counterfactuals. Formally, they are shown to generalise the conditional setting in the style of Kraus, Lehmann, and Magidor. We show that situation-based conditionals can be described in terms of a set of rationality postulates. We then propose an intuitive semantics for these conditionals, and present a representation result which shows that our semantic construction corresponds exactly to the description in terms of postulates. With the semantics in place, we proceed to define a form of entailment for situated conditional knowledge bases, which we refer to as minimal closure. It is reminiscent of and, indeed, inspired by, the version of entailment for propositional conditional knowledge bases known as rational closure. Finally, we proceed to show that it is possible to reduce the computation of minimal closure to a series of propositional entailment and satisfiability checks. While this is also the case for rational closure, it is somewhat surprising that the result carries over to minimal closure.
Large-scale natural language understanding (NLU) systems have made impressive progress: they can be applied flexibly across a variety of tasks, and employ minimal structural assumptions. However, extensive empirical research has shown this to be a double-edged sword, coming at the cost of shallow understanding: inferior generalization, grounding and explainability. Grounded language learning approaches offer the promise of deeper understanding by situating learning in richer, more structured training environments, but are limited in scale to relatively narrow, predefined domains. How might we enjoy the best of both worlds: grounded, general NLU? Following extensive contemporary cognitive science, we propose treating environments as first-class citizens in semantic representations, worthy of research and development in their own right. Importantly, models should also be partners in the creation and configuration of environments, rather than just actors within them, as in existing approaches. To do so, we argue that models must begin to understand and program in the language of affordances (which define possible actions in a given situation) both for online, situated discourse comprehension, as well as large-scale, offline common-sense knowledge mining. To this end we propose an environment-oriented ecological semantics, outlining theoretical and practical approaches towards implementation. We further provide actual demonstrations building upon interactive fiction programming languages.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artificial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
As digital virtual assistants become ubiquitous, it becomes increasingly important to understand the situated behaviour of users as they interact with these assistants. To this end, we introduce SIMMC, an extension to ParlAI for multi-modal conversational data collection and system evaluation. SIMMC simulates an immersive setup, where crowd workers are able to interact with environments constructed in AI Habitat or Unity while engaging in a conversation. The assistant in SIMMC can be a crowd worker or Artificial Intelligent (AI) agent. This enables both (i) a multi-player / Wizard of Oz setting for data collection, or (ii) a single player mode for model / system evaluation. We plan to open-source a situated conversational data-set collected on this platform for the Conversational AI research community.
There is a significant lack of unified approaches to building generally intelligent machines. The majority of current artificial intelligence research operates within a very narrow field of focus, frequently without considering the importance of the big picture. In this document, we seek to describe and unify principles that guide the basis of our development of general artificial intelligence. These principles revolve around the idea that intelligence is a tool for searching for general solutions to problems. We define intelligence as the ability to acquire skills that narrow this search, diversify it and help steer it to more promising areas. We also provide suggestions for studying, measuring, and testing the various skills and abilities that a human-level intelligent machine needs to acquire. The document aims to be both implementation agnostic, and to provide an analytic, systematic, and scalable way to generate hypotheses that we believe are needed to meet the necessary conditions in the search for general artificial intelligence. We believe that such a framework is an important stepping stone for bringing together definitions, highlighting open problems, connecting researchers willing to collaborate, and for unifying the arguably most significant search of this century.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا