No Arabic abstract
Large-scale natural language understanding (NLU) systems have made impressive progress: they can be applied flexibly across a variety of tasks, and employ minimal structural assumptions. However, extensive empirical research has shown this to be a double-edged sword, coming at the cost of shallow understanding: inferior generalization, grounding and explainability. Grounded language learning approaches offer the promise of deeper understanding by situating learning in richer, more structured training environments, but are limited in scale to relatively narrow, predefined domains. How might we enjoy the best of both worlds: grounded, general NLU? Following extensive contemporary cognitive science, we propose treating environments as first-class citizens in semantic representations, worthy of research and development in their own right. Importantly, models should also be partners in the creation and configuration of environments, rather than just actors within them, as in existing approaches. To do so, we argue that models must begin to understand and program in the language of affordances (which define possible actions in a given situation) both for online, situated discourse comprehension, as well as large-scale, offline common-sense knowledge mining. To this end we propose an environment-oriented ecological semantics, outlining theoretical and practical approaches towards implementation. We further provide actual demonstrations building upon interactive fiction programming languages.
AI systems have seen significant adoption in various domains. At the same time, further adoption in some domains is hindered by inability to fully trust an AI system that it will not harm a human. Besides the concerns for fairness, privacy, transparency, and explainability are key to developing trusts in AI systems. As stated in describing trustworthy AI Trust comes through understanding. How AI-led decisions are made and what determining factors were included are crucial to understand. The subarea of explaining AI systems has come to be known as XAI. Multiple aspects of an AI system can be explained; these include biases that the data might have, lack of data points in a particular region of the example space, fairness of gathering the data, feature importances, etc. However, besides these, it is critical to have human-centered explanations that are directly related to decision-making similar to how a domain expert makes decisions based on domain knowledge, that also include well-established, peer-validated explicit guidelines. To understand and validate an AI systems outcomes (such as classification, recommendations, predictions), that lead to developing trust in the AI system, it is necessary to involve explicit domain knowledge that humans understand and use.
This paper presents a deep learning architecture for the semantic decoder component of a Statistical Spoken Dialogue System. In a slot-filling dialogue, the semantic decoder predicts the dialogue act and a set of slot-value pairs from a set of n-best hypotheses returned by the Automatic Speech Recognition. Most current models for spoken language understanding assume (i) word-aligned semantic annotations as in sequence taggers and (ii) delexicalisation, or a mapping of input words to domain-specific concepts using heuristics that try to capture morphological variation but that do not scale to other domains nor to language variation (e.g., morphology, synonyms, paraphrasing ). In this work the semantic decoder is trained using unaligned semantic annotations and it uses distributed semantic representation learning to overcome the limitations of explicit delexicalisation. The proposed architecture uses a convolutional neural network for the sentence representation and a long-short term memory network for the context representation. Results are presented for the publicly available DSTC2 corpus and an In-car corpus which is similar to DSTC2 but has a significantly higher word error rate (WER).
Humans use spatial language to naturally describe object locations and their relations. Interpreting spatial language not only adds a perceptual modality for robots, but also reduces the barrier of interfacing with humans. Previous work primarily considers spatial language as goal specification for instruction following tasks in fully observable domains, often paired with reference paths for reward-based learning. However, spatial language is inherently subjective and potentially ambiguous or misleading. Hence, in this paper, we consider spatial language as a form of stochastic observation. We propose SLOOP (Spatial Language Object-Oriented POMDP), a new framework for partially observable decision making with a probabilistic observation model for spatial language. We apply SLOOP to object search in city-scale environments. To interpret ambiguous, context-dependent prepositions (e.g. front), we design a simple convolutional neural network that predicts the language providers latent frame of reference (FoR) given the environment context. Search strategies are computed via an online POMDP planner based on Monte Carlo Tree Search. Evaluation based on crowdsourced language data, collected over areas of five cities in OpenStreetMap, shows that our approach achieves faster search and higher success rate compared to baselines, with a wider margin as the spatial language becomes more complex. Finally, we demonstrate the proposed method in AirSim, a realistic simulator where a drone is tasked to find cars in a neighborhood environment.
Contemporary approaches to perception, planning, estimation, and control have allowed robots to operate robustly as our remote surrogates in uncertain, unstructured environments. There is now an opportunity for robots to operate not only in isolation, but also with and alongside humans in our complex environments. Natural language provides an efficient and flexible medium through which humans can communicate with collaborative robots. Through significant progress in statistical methods for natural language understanding, robots are now able to interpret a diverse array of free-form navigation, manipulation, and mobile manipulation commands. However, most contemporary approaches require a detailed prior spatial-semantic map of the robots environment that models the space of possible referents of the utterance. Consequently, these methods fail when robots are deployed in new, previously unknown, or partially observed environments, particularly when mental models of the environment differ between the human operator and the robot. This paper provides a comprehensive description of a novel learning framework that allows field and service robots to interpret and correctly execute natural language instructions in a priori unknown, unstructured environments. Integral to our approach is its use of language as a sensor -- inferring spatial, topological, and semantic information implicit in natural language utterances and then exploiting this information to learn a distribution over a latent environment model. We incorporate this distribution in a probabilistic language grounding model and infer a distribution over a symbolic representation of the robots action space. We use imitation learning to identify a belief space policy that reasons over the environment and behavior distributions. We evaluate our framework through a variety of different navigation and mobile manipulation experiments.
Commonsense knowledge (CSK) about concepts and their properties is useful for AI applications such as robust chatbots. Prior works like ConceptNet, TupleKB and others compiled large CSK collections, but are restricted in their expressiveness to subject-predicate-object (SPO) triples with simple concepts for S and monolithic strings for P and O. Also, these projects have either prioritized precision or recall, but hardly reconcile these complementary goals. This paper presents a methodology, called Ascent, to automatically build a large-scale knowledge base (KB) of CSK assertions, with advanced expressiveness and both better precision and recall than prior works. Ascent goes beyond triples by capturing composite concepts with subgroups and aspects, and by refining assertions with semantic facets. The latter are important to express temporal and spatial validity of assertions and further qualifiers. Ascent combines open information extraction with judicious cleaning using language models. Intrinsic evaluation shows the superior size and quality of the Ascent KB, and an extrinsic evaluation for QA-support tasks underlines the benefits of Ascent.