No Arabic abstract
Precise control over the size and shape of graphene nanostructures allows engineering spin-polarized edge and topological states, representing a novel source of non-conventional $pi$-magnetism with promising applications in quantum spintronics. A prerequisite for their emergence is the existence of robust gapped phases, which are difficult to find in extended graphene systems: only armchair graphene nanoribbons (GNRs) show a band gap that, however, closes for any other GNR orientation. Here we show that semi-metallic chiral GNRs (chGNRs) narrowed down to nanometer widths undergoes a topological phase transition, becoming first topological insulators, and transforming then into trivial band insulators for the narrowest chGNRs. We fabricated atomically precise chGNRs of different chirality and size by on surface synthesis using predesigned molecular precursors. Combining scanning tunnelling microscopy (STM) measurements and theory simulations, we follow the evolution of topological properties and bulk band gap depending on the width, length, and chirality of chGNRs. The first emerging gapped phases are topological, protected by a chiral interaction pattern between edges. For narrower ribbons, the symmetry of the interaction pattern changes, and the topological gap closes and re-opens again as a trivial band insulator. Our findings represent a new platform for producing topologically protected spin states and demonstrates the potential of connecting chiral edge and defect structure with band engineering.
We prescribe general rules to predict the existence of edge states and zero-energy flat bands in graphene nanoribbons and graphene edges of arbitrary shape. No calculations are needed. For the so-called {it{minimal}} edges, the projection of the edge translation vector into the zigzag direction of graphene uniquely determines the edge bands. By adding extra nodes to minimal edges, arbitrary modified edges can be obtained. The edge bands of modified graphene edges can be found by applying hybridization rules of the extra atoms with the ones belonging to the original edge. Our prescription correctly predicts the localization and degeneracy of the zero-energy bands at one of the graphene sublattices, confirmed by tight-binding and first-principle calculations. It also allows us to qualitatively predict the existence of $E e 0$ bands appearing in the energy gap of certain edges and nanoribbons.
A central question in the field of graphene-related research is how graphene behaves when it is patterned at the nanometer scale with different edge geometries. Perhaps the most fundamental shape relevant to this question is the graphene nanoribbon (GNR), a narrow strip of graphene that can have different chirality depending on the angle at which it is cut. Such GNRs have been predicted to exhibit a wide range of behaviour (depending on their chirality and width) that includes tunable energy gaps and the presence of unique one-dimensional (1D) edge states with unusual magnetic structure. Most GNRs explored experimentally up to now have been characterized via electrical conductivity, leaving the critical relationship between electronic structure and local atomic geometry unclear (especially at edges). Here we present a sub-nm-resolved scanning tunnelling microscopy (STM) and spectroscopy (STS) study of GNRs that allows us to examine how GNR electronic structure depends on the chirality of atomically well-defined GNR edges. The GNRs used here were chemically synthesized via carbon nanotube (CNT) unzipping methods that allow flexible variation of GNR width, length, chirality, and substrate. Our STS measurements reveal the presence of 1D GNR edge states whose spatial characteristics closely match theoretical expectations for GNRs of similar width and chirality. We observe width-dependent splitting in the GNR edge state energy bands, providing compelling evidence of their magnetic nature. These results confirm the novel electronic behaviour predicted for GNRs with atomically clean edges, and thus open the door to a whole new area of applications exploiting the unique magnetoelectronic properties of chiral GNRs.
Photo-induced edge states in low dimensional materials have attracted considerable attention due to the tunability of topological properties and dispersion. Specifically, graphene nanoribbons have been predicted to host chiral edge modes upon irradiation with circularly polarized light. Here, we present numerical calculations of time-resolved angle resolved photoemission spectroscopy (trARPES) and time-resolved resonant inelastic x-ray scattering (trRIXS) of a graphene nanoribbon. We characterize pump-probe spectroscopic signatures of photo-induced edge states, illustrate the origin of distinct spectral features that arise from Floquet topological edge modes, and investigate the roles of incoming photon energies and finite core-hole lifetime in RIXS. With momentum, energy, and time resolution, pump-probe spectroscopies can play an important role in understanding the behavior of photo-induced topological states of matter.
In topological systems, a modulation in the gap onset near interfaces can lead to the appearance of massive edge states, as were first described by Volkov and Pankratov. In this work, we study graphene nanoribbons in the presence of intrinsic spin-orbit coupling smoothly modulated near the system edges. We show that this space modulation leads to the appearance of Volkov-Pankratov states, in addition to the topologically protected ones. We obtain this result by means of two complementary methods, one based on the effective low-energy Dirac equation description and the other on a fully numerical tight-binding approach, finding excellent agreement between the two. We then show how transport measurements might reveal the presence of Volkov-Pankratov states, and discuss possible graphene-like structures in which such states might be observed.
We present a microscopic theory of the chiral one-dimensional electron gas system localized on the sidewalls of magnetically-doped Bi$_2$Se$_3$-family topological insulator nanoribbons in the quantum anomalous Hall effect (QAHE) regime. Our theory is based on a simple continuum model of sidewall states whose parameters are extracted from detailed ribbon and film geometry tight-binding model calculations. In contrast to the familiar case of the quantum Hall effect in semiconductor quantum wells, the number of microscopic chiral channels depends simply and systematically on the ribbon thickness and on the position of the Fermi level within the surface state gap. We use our theory to interpret recent transport experiments that exhibit non-zero longitudinal resistance in samples with accurately quantized Hall conductances.