No Arabic abstract
Generative adversarial networks (GANs) have attained photo-realistic quality. However, it remains an open challenge of how to best control the image content. We introduce LatentKeypointGAN, a two-stage GAN that is trained end-to-end on the classical GAN objective yet internally conditioned on a set of sparse keypoints with associated appearance embeddings that respectively control the position and style of the generated objects and their parts. A major difficulty that we address with suitable network architectures and training schemes is disentangling the image into spatial and appearance factors without any supervision signals of either nor domain knowledge. We demonstrate that LatentKeypointGAN provides an interpretable latent space that can be used to re-arrange the generated images by re-positioning and exchanging keypoint embeddings, such as combining the eyes, nose, and mouth from different images for generating portraits. In addition, the explicit generation of keypoints and matching images enables a new, GAN-based methodology for unsupervised keypoint detection.
We introduce a technique for 3D human keypoint estimation that directly models the notion of spatial uncertainty of a keypoint. Our technique employs a principled approach to modelling spatial uncertainty inspired from techniques in robust statistics. Furthermore, our pipeline requires no 3D ground truth labels, relying instead on (possibly noisy) 2D image-level keypoints. Our method achieves near state-of-the-art performance on Human3.6m while being efficient to evaluate and straightforward to
Though generative adversarial networks (GANs) areprominent models to generate realistic and crisp images,they often encounter the mode collapse problems and arehard to train, which comes from approximating the intrinsicdiscontinuous distribution transform map with continuousDNNs. The recently proposed AE-OT model addresses thisproblem by explicitly computing the discontinuous distribu-tion transform map through solving a semi-discrete optimaltransport (OT) map in the latent space of the autoencoder.However the generated images are blurry. In this paper, wepropose the AE-OT-GAN model to utilize the advantages ofthe both models: generate high quality images and at thesame time overcome the mode collapse/mixture problems.Specifically, we first faithfully embed the low dimensionalimage manifold into the latent space by training an autoen-coder (AE). Then we compute the optimal transport (OT)map that pushes forward the uniform distribution to the la-tent distribution supported on the latent manifold. Finally,our GAN model is trained to generate high quality imagesfrom the latent distribution, the distribution transform mapfrom which to the empirical data distribution will be con-tinuous. The paired data between the latent code and thereal images gives us further constriction about the generator.Experiments on simple MNIST dataset and complex datasetslike Cifar-10 and CelebA show the efficacy and efficiency ofour proposed method.
In recent years, Generative Adversarial Networks have become ubiquitous in both research and public perception, but how GANs convert an unstructured latent code to a high quality output is still an open question. In this work, we investigate regression into the latent space as a probe to understand the compositional properties of GANs. We find that combining the regressor and a pretrained generator provides a strong image prior, allowing us to create composite images from a collage of random image parts at inference time while maintaining global consistency. To compare compositional properties across different generators, we measure the trade-offs between reconstruction of the unrealistic input and image quality of the regenerated samples. We find that the regression approach enables more localized editing of individual image parts compared to direct editing in the latent space, and we conduct experiments to quantify this independence effect. Our method is agnostic to the semantics of edits, and does not require labels or predefined concepts during training. Beyond image composition, our method extends to a number of related applications, such as image inpainting or example-based image editing, which we demonstrate on several GANs and datasets, and because it uses only a single forward pass, it can operate in real-time. Code is available on our project page: https://chail.github.io/latent-composition/.
We introduce a simple but effective unsupervised method for generating realistic and diverse images. We train a class-conditional GAN model without using manually annotated class labels. Instead, our model is conditional on labels automatically derived from clustering in the discriminators feature space. Our clustering step automatically discovers diverse modes, and explicitly requires the generator to cover them. Experiments on standard mode collapse benchmarks show that our method outperforms several competing methods when addressing mode collapse. Our method also performs well on large-scale datasets such as ImageNet and Places365, improving both image diversity and standard quality metrics, compared to previous methods.
Universal lesion detection in computed tomography (CT) images is an important yet challenging task due to the large variations in lesion type, size, shape, and appearance. Considering that data in clinical routine (such as the DeepLesion dataset) are usually annotated with a long and a short diameter according to the standard of Response Evaluation Criteria in Solid Tumors (RECIST) diameters, we propose RECIST-Net, a new approach to lesion detection in which the four extreme points and center point of the RECIST diameters are detected. By detecting a lesion as keypoints, we provide a more conceptually straightforward formulation for detection, and overcome several drawbacks (e.g., requiring extensive effort in designing data-appropriate anchors and losing shape information) of existing bounding-box-based methods while exploring a single-task, one-stage approach compared to other RECIST-based approaches. Experiments show that RECIST-Net achieves a sensitivity of 92.49% at four false positives per image, outperforming other recent methods including those using multi-task learning.