Do you want to publish a course? Click here

Multiscale Clustering of Hyperspectral Images Through Spectral-Spatial Diffusion Geometry

62   0   0.0 ( 0 )
 Added by Sam Polk
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Clustering algorithms partition a dataset into groups of similar points. The primary contribution of this article is the Multiscale Spatially-Regularized Diffusion Learning (M-SRDL) clustering algorithm, which uses spatially-regularized diffusion distances to efficiently and accurately learn multiple scales of latent structure in hyperspectral images (HSI). The M-SRDL clustering algorithm extracts clusterings at many scales from an HSI and outputs these clusterings variation of information-barycenter as an exemplar for all underlying cluster structure. We show that incorporating spatial regularization into a multiscale clustering framework corresponds to smoother and more coherent clusters when applied to HSI data and leads to more accurate clustering labels.



rate research

Read More

Hyperspectral image (HSI) clustering, which aims at dividing hyperspectral pixels into clusters, has drawn significant attention in practical applications. Recently, many graph-based clustering methods, which construct an adjacent graph to model the data relationship, have shown dominant performance. However, the high dimensionality of HSI data makes it hard to construct the pairwise adjacent graph. Besides, abundant spatial structures are often overlooked during the clustering procedure. In order to better handle the high dimensionality problem and preserve the spatial structures, this paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering. The SSCAG has the following contributions: 1) the anchor graph-based strategy is used to construct a tractable large graph for HSI data, which effectively exploits all data points and reduces the computational complexity; 2) a new similarity metric is presented to embed the spatial-spectral information into the combined adjacent graph, which can mine the intrinsic property structure of HSI data; 3) an effective neighbors assignment strategy is adopted in the optimization, which performs the singular value decomposition (SVD) on the adjacent graph to get solutions efficiently. Extensive experiments on three public HSI datasets show that the proposed SSCAG is competitive against the state-of-the-art approaches.
Hyperspectral unmixing aims at identifying a set of elementary spectra and the corresponding mixture coefficients for each pixel of an image. As the elementary spectra correspond to the reflectance spectra of real materials, they are often very correlated yielding an ill-conditioned problem. To enrich the model and to reduce ambiguity due to the high correlation, it is common to introduce spatial information to complement the spectral information. The most common way to introduce spatial information is to rely on a spatial regularization of the abundance maps. In this paper, instead of considering a simple but limited regularization process, spatial information is directly incorporated through the newly proposed context of spatial unmixing. Contextual features are extracted for each pixel and this additional set of observations is decomposed according to a linear model. Finally the spatial and spectral observations are unmixed jointly through a cofactorization model. In particular, this model introduces a coupling term used to identify clusters of shared spatial and spectral signatures. An evaluation of the proposed method is conducted on synthetic and real data and shows that results are accurate and also very meaningful since they describe both spatially and spectrally the various areas of the scene.
Clustering algorithms partition a dataset into groups of similar points. The clustering problem is very general, and different partitions of the same dataset could be considered correct and useful. To fully understand such data, it must be considered at a variety of scales, ranging from coarse to fine. We introduce the Multiscale Environment for Learning by Diffusion (MELD) data model, which is a family of clusterings parameterized by nonlinear diffusion on the dataset. We show that the MELD data model precisely captures latent multiscale structure in data and facilitates its analysis. To efficiently learn the multiscale structure observed in many real datasets, we introduce the Multiscale Learning by Unsupervised Nonlinear Diffusion (M-LUND) clustering algorithm, which is derived from a diffusion process at a range of temporal scales. We provide theoretical guarantees for the algorithms performance and establish its computational efficiency. Finally, we show that the M-LUND clustering algorithm detects the latent structure in a range of synthetic and real datasets.
The application of infrared hyperspectral imagery to geological problems is becoming more popular as data become more accessible and cost-effective. Clustering and classifying spectrally similar materials is often a first step in applications ranging from economic mineral exploration on Earth to planetary exploration on Mars. Semi-manual classification guided by expertly developed spectral parameters can be time consuming and biased, while supervised methods require abundant labeled data and can be difficult to generalize. Here we develop a fully unsupervised workflow for feature extraction and clustering informed by both expert spectral geologist input and quantitative metrics. Our pipeline uses a lightweight autoencoder followed by Gaussian mixture modeling to map the spectral diversity within any image. We validate the performance of our pipeline at submillimeter-scale with expert-labelled data from the Oman ophiolite drill core and evaluate performance at meters-scale with partially classified orbital data of Jezero Crater on Mars (the landing site for the Perseverance rover). We additionally examine the effects of various preprocessing techniques used in traditional analysis of hyperspectral imagery. This pipeline provides a fast and accurate clustering map of similar geological materials and consistently identifies and separates major mineral classes in both laboratory imagery and remote sensing imagery. We refer to our pipeline as Generalized Pipeline for Spectroscopic Unsupervised clustering of Minerals (GyPSUM).
Hyperspectral compressive imaging takes advantage of compressive sensing theory to achieve coded aperture snapshot measurement without temporal scanning, and the entire three-dimensional spatial-spectral data is captured by a two-dimensional projection during a single integration period. Its core issue is how to reconstruct the underlying hyperspectral image using compressive sensing reconstruction algorithms. Due to the diversity in the spectral response characteristics and wavelength range of different spectral imaging devices, previous works are often inadequate to capture complex spectral variations or lack the adaptive capacity to new hyperspectral imagers. In order to address these issues, we propose an unsupervised spatial-spectral network to reconstruct hyperspectral images only from the compressive snapshot measurement. The proposed network acts as a conditional generative model conditioned on the snapshot measurement, and it exploits the spatial-spectral attention module to capture the joint spatial-spectral correlation of hyperspectral images. The network parameters are optimized to make sure that the network output can closely match the given snapshot measurement according to the imaging model, thus the proposed network can adapt to different imaging settings, which can inherently enhance the applicability of the network. Extensive experiments upon multiple datasets demonstrate that our network can achieve better reconstruction results than the state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا