Do you want to publish a course? Click here

Entanglement of Free Fermions on Hamming Graphs

59   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Free fermions on Hamming graphs $H(d,q)$ are considered and the entanglement entropy for two types of subsystems is computed. For subsets of vertices that form Hamming subgraphs, an analytical expression is obtained. For subsets corresponding to a neighborhood, i.e. to a set of sites at a fixed distance from a reference vertex, a decomposition in irreducible submodules of the Terwilliger algebra of $H(d,q)$ also yields a closed formula for the entanglement entropy. Finally, for subsystems made out of multiple neighborhoods, it is shown how to construct a block-tridiagonal operator which commutes with the entanglement Hamiltonian. It is identified as a BC-Gaudin magnet Hamiltonian in a magnetic field and is diagonalized by the modified algebraic Bethe ansatz.

rate research

Read More

Free fermions on Johnson graphs $J(n,k)$ are considered and the entanglement entropy of sets of neighborhoods is computed. For a subsystem composed of a single neighborhood, an analytical expression is provided by the decomposition in irreducible submodules of the Terwilliger algebra of $J(n,k)$ embedded in two copies of $mathfrak{su}(2)$. For a subsytem composed of multiple neighborhoods, the construction of a block-tridiagonal operator which commutes with the entanglement Hamiltonian is presented, its usefulness in computing the entropy is stressed and the area law pre-factor is discussed.
$H_q(n,d)$ is defined as the graph with vertex set ${mathbb Z}_q^n$ and where two vertices are adjacent if their Hamming distance is at least $d$. The chromatic number of these graphs is presented for various sets of parameters $(q,n,d)$. For the $4$-colorings of the graphs $H_2(n,n-1)$ a notion of robustness is introduced. It is based on the tolerance of swapping colors along an edge without destroying properness of the coloring. An explicit description of the maximally robust $4$-colorings of $H_2(n,n-1)$ is presented.
For indistinguishable itinerant particles subject to a superselection rule fixing their total number, a portion of the entanglement entropy under a spatial bipartition of the ground state is due to particle fluctuations between subsystems and thus is inaccessible as a resource for quantum information processing. We quantify the remaining operationally accessible entanglement in a model of interacting spinless fermions on a one dimensional lattice via exact diagonalization and the density matrix renormalization group. We find that the accessible entanglement exactly vanishes at the first order phase transition between a Tomonaga-Luttinger liquid and phase separated solid for attractive interactions and is maximal at the transition to the charge density wave for repulsive interactions. Throughout the phase diagram, we discuss the connection between the accessible entanglement entropy and the variance of the probability distribution describing intra-subregion particle number fluctuations.
We generalize techniques previously used to compute ground-state properties of one-dimensional noninteracting quantum gases to obtain exact results at finite temperature. We compute the order-n Renyi entanglement entropy to all orders in the fugacity in one, two, and three spatial dimensions. In all spatial dimensions, we provide closed-form expressions for its virial expansion up to next-to-leading order. In all of our results, we find explicit volume scaling in the high-temperature limit.
Not all quantum protocols require entanglement to outperform their classical alternatives. The nonclassical correlations that lead to this quantum advantage are conjectured to be captured by quantum discord. Here we demonstrate that discord can be explicitly used as a resource: certifying untrusted entangling gates without generating entanglement at any stage. We implement our protocol in the single-photon regime, and show its success in the presence of high levels of noise and imperfect gate operations. Our technique offers a practical method for benchmarking entangling gates in physical architectures in which only highly-mixed states are available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا