Do you want to publish a course? Click here

Entanglement of Free Fermions and Bosons at Finite Temperature

98   0   0.0 ( 0 )
 Added by Joaquin E. Drut
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We generalize techniques previously used to compute ground-state properties of one-dimensional noninteracting quantum gases to obtain exact results at finite temperature. We compute the order-n Renyi entanglement entropy to all orders in the fugacity in one, two, and three spatial dimensions. In all spatial dimensions, we provide closed-form expressions for its virial expansion up to next-to-leading order. In all of our results, we find explicit volume scaling in the high-temperature limit.

rate research

Read More

We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functions, and represents a unification of previous distinct approaches with many known results appearing as direct consequences of the developed mathematical structure. In addition, we introduce a general decomposition of the correlations between occupation numbers in terms of the occupation numbers of individual energy levels, that is valid for both non-degenerate and degenerate spectra. To demonstrate the applicability of the theory in the presence of degeneracy, we compute energy level correlations up to fourth order in a bosonic ring in the presence of a magnetic field.
We formulate a new ``Wigner characteristics based method to calculate entanglement entropies of subsystems of Fermions using Keldysh field theory. This bypasses the requirements of working with complicated manifolds for calculating R{e}nyi entropies for many body systems. We provide an exact analytic formula for R{e}nyi and von-Neumann entanglement entropies of non-interacting open quantum systems, which are initialised in arbitrary Fock states. We use this formalism to look at entanglement entropies of momentum Fock states of one-dimensional Fermions. We show that the entanglement entropy of a Fock state can scale either logarithmically or linearly with subsystem size, depending on whether the number of discontinuities in the momentum distribution is smaller or larger than the subsystem size. This classification of states in terms number of blocks of occupied momenta allows us to analytically estimate the number of critical and non-critical Fock states for a particular subsystem size. We also use this formalism to describe entanglement dynamics of an open quantum system starting with a single domain wall at the center of the system. Using entanglement entropy and mutual information, we understand the dynamics in terms of coherent motion of the domain wall wavefronts, creation and annihilation of domain walls and incoherent exchange of particles with the bath.
We study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point where the three phases coexist. The truncation of the energy distribution at the trap barrier, which is a generic phenomenon in cold atom systems, limits the growth of the localization length and in contrast to the thermodynamic limit the insulator phase is present at any temperature.
In a quantum many-body system that possesses an additive conserved quantity, the entanglement entropy of a subsystem can be resolved into a sum of contributions from different sectors of the subsystems reduced density matrix, each sector corresponding to a possible value of the conserved quantity. Recent studies have discussed the basic properties of these symmetry-resolved contributions, and calculated them using conformal field theory and numerical methods. In this work we employ the generalized Fisher-Hartwig conjecture to obtain exact results for the characteristic function of the symmetry-resolved entanglement (flux-resolved entanglement) for certain 1D spin chains, or, equivalently, the 1D fermionic tight binding and the Kitaev chain models. These results are true up to corrections of order $o(L^{-1})$ where $L$ is the subsystem size. We confirm that this calculation is in good agreement with numerical results. For the gapless tight binding chain we report an intriguing periodic structure of the characteristic functions, which nicely extends the structure predicted by conformal field theory. For the Kitaev chain in the topological phase we demonstrate the degeneracy between the even and odd fermion parity sectors of the entanglement spectrum due to virtual Majoranas at the entanglement cut. We also employ the Widom conjecture to obtain the leading behavior of the symmetry-resolved entanglement entropy in higher dimensions for an ungapped free Fermi gas in its ground state.
377 - Hao Xie , Linfeng Zhang , Lei Wang 2021
We present a variational density matrix approach to the thermal properties of interacting fermions in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body unitary transformation together with a discrete probabilistic model. The unitary transformation is implemented as a quantum counterpart of neural canonical transformation, which incorporates correlation effects via a flow of fermion coordinates. As the first application, we study electrons in a two-dimensional quantum dot with an interaction-induced crossover from Fermi liquid to Wigner molecule. The present approach provides accurate results in the low-temperature regime, where conventional quantum Monte Carlo methods face severe difficulties due to the fermion sign problem. The approach is general and flexible for further extensions, thus holds the promise to deliver new physical results on strongly correlated fermions in the context of ultracold quantum gases, condensed matter, and warm dense matter physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا