No Arabic abstract
Precise determination of the solid-state microstructure of semiconducting polymers is of paramount importance for the further development of these materials in various organic electronic technologies. Yet, prior characterization of the ordering of semiconducting polymers often resulted in conundrums in which X-ray scattering and microscopy yielded seemingly contradicting results. Here, based on fast scanning calorimetry, we introduce for the first time the concept of the semi-para-crystallinity and measurement of the degree of para-crystallinity (ordered volume/mass fraction) in a set of materials that previously eluded understanding. In combination with lattice distortion determination within para-crystals (g-parameter from X-ray scattering) and nanomorphology, the complete solid-state microstructure is correlated with device properties. Our data show that the long-range charge carrier transport in these materials is more sensitive to the interconnection of para-crystal units than to the amount of structural order itself.
New carbon forms exhibiting extraordinary physico-chemical properties can be generated from nanostructured precursors under extreme pressure. Nevertheless, synthesis of such fascinating materials is often not well understood that results, as is the case of C60 precursor, in irreproducibility of the results and impeding further progress in the materials design. Here the semiconducting amorphous carbon having bandgaps of 0.1-0.3 eV and the advantages of isotropic superhardness and superior toughness over single-crystal diamond and inorganic glasses are produced from transformation of fullerene at high pressure and moderate temperatures. A systematic investigation of the structure and bonding evolution was carried out by using rich arsenal of complimentary characterization methods, which helps to build a model of the transformation that can be used in further high p,T synthesis of novel nanocarbon systems for advanced applications. The produced amorphous carbon materials have the potential of demanding optoelectronic applications that diamond and graphene cannot achieve
In this letter we derive a universal law for nanoindentation, considering different sizes and shapes of the indenter. The law matches as limit cases all the well-known hardness scaling laws proposed in the literature. But our finding can also explain their deviations experimentally observed at the nanoscale. An even more general scaling law is then formulated, also in the fast and slow dynamics; it is based only on the surface over volume ratio of the domain in which the energy flux occurs: thus, its application in different fields, also for chaotic and complex (e.g., biological) systems, is demonstrated.
We present here a brief overview of our work in developing a convolutionless quantum master equation approach suitable for mesoscopic sized systems. Our final equation can be used in the regimes where the golden rule approach is not applicable. Here we apply the approach to study the electronic relaxation in several models with the finite number of normal modes. For such mesoscopic systems the relaxation behavior differs substantially from the simple exponential relaxation. In particular, the equation shows the appearance of the recurrence phenomena on a time-scale determined by the slowest mode of the system. The formal results are quite general and can be used for a wide range of physical systems. Numerical results are presented for a two level system coupled to an Ohmic and super-Ohmic baths, as well as for a model of charge-transfer dynamics between semiconducting organic polymers. In this later system, we show how both slow and fast phonon modes contribute to the decay of an exciton across a heterojunction interface.
Understanding the links between the activity of supermassive black holes (SMBH) at the centres of galaxies and their host dark matter haloes is a key question in modern astrophysics. The final data release of the SDSS-IV eBOSS provides the largest contemporary spectroscopic sample of galaxies and QSOs. Using this sample and covering the redshift interval $z=0.7-1.1$, we have measured the clustering properties of the eBOSS QSOs, Emission Line Galaxies (ELGs) and Luminous Red Galaxies (LRGs). We have also measured the fraction of QSOs as a function of the overdensity defined by the galaxy population. Using these measurements, we investigate how QSOs populate and sample the galaxy population, and how the host dark-matter haloes of QSOs sample the underlying halo distribution. We find that the probability of a galaxy hosting a QSO is independent of the host dark matter halo mass of the galaxy. We also find that about 60% of eBOSS QSOs are hosted by LRGs and about 20-40% of QSOs are hosted by satellite galaxies. We find a slight preference for QSOs to populate satellite galaxies over central galaxies. This is connected to the host halo mass distribution of different types of galaxies. Based on our analysis, QSOs should be hosted by a very broad distribution of haloes, and their occurrence should be modulated only by the efficiency of galaxy formation processes.
We use the stellar-mass-selected catalog from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) in the COSMOS field to study the environments of galaxies via galaxy density and clustering analyses up to $z sim 2.5$. The clustering strength of quiescent galaxies exceeds that of star-forming galaxies, implying that quiescent galaxies are preferentially located in more massive halos. When using local density measurement, we find a clear positive quiescent fraction--density relation at $z < 1$, consistent with earlier results. However, the quiescent fraction--density relation reverses its trend at intermediate redshifts ($1 < z < 1.5$) with marginal significance (<1.8$sigma$) and is found to be scale dependent (1.6$sigma$). The lower fraction of quiescent galaxies seen in large-scale dense environments, if confirmed to be true, may be associated with the fact that the star formation can be more easily sustained via cold stream accretion in `large-scale high-density regions, preventing galaxies from permanent quenching. Finally, at $z > 1.5$, the quiescent fraction depends little on the local density, even though clustering shows that quiescent galaxies are in more massive halos. We argue that at high redshift the typical halo size falls below $10^{13}$ $M_{odot}$, where intrinsically the local density measurements are so varied that they do not trace the halo mass. Our results thus suggest that in the high-redshift Universe, halo mass may be the key in quenching the star formation in galaxies, rather than the conventionally measured galaxy density.