Do you want to publish a course? Click here

A paradifferential approach for hyperbolic dynamical systems and applications

64   0   0.0 ( 0 )
 Added by Colin Guillarmou
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We develop a paradifferential approach for studying non-smooth hyperbolic dynamics and related non-linear PDE from a microlocal point of view. As an application, we describe the microlocal regularity, i.e the $H^s$ wave-front set for all $s$, of the unstable bundle $E_u$ for an Anosov flow. We also recover rigidity results of Hurder-Katok and Hasselblatt in the Sobolev class rather than Holder: there is $s_0>0$ such that if $E_u$ has $H^s$ regularity for $s>s_0$ then it is smooth (with $s_0=2$ for volume preserving $3$-dimensional Anosov flows). In the appendix by Guedes Bonthonneau, it is also shown that it can be applied to deal with non-smooth flows and potentials. This work could serve as a toolbox for other applications.



rate research

Read More

164 - Bixiang Wang 2012
We study pullback attractors of non-autonomous non-compact dynamical systems generated by differential equations with non-autonomous deterministic as well as stochastic forcing terms. We first introduce the concepts of pullback attractors and asymptotic compactness for such systems. We then prove a sufficient and necessary condition for existence of pullback attractors. We also introduce the concept of complete orbits for this sort of systems and use these special solutions to characterize the structures of pullback attractors. For random systems containing periodic deterministic forcing terms, we show the pullback attractors are also periodic. As an application of the abstract theory, we prove the existence of a unique pullback attractor for Reaction-Diffusion equations on $R^n$ with both deterministic and random external terms. Since Sobolev embeddings are not compact on unbounded domains, the uniform estimates on the tails of solutions are employed to establish the asymptotic compactness of solutions.
155 - Bixiang Wang 2009
The upper semicontinuity of random attractors for non-compact random dynamical systems is proved when the union of all perturbed random attractors is precompact with probability one. This result is applied to the stochastic Reaction-Diffusion with white noise defined on the entire space R^n.
224 - Bixiang Wang 2015
This paper deals with the multivalued non-autonomous random dynamical system generated by the non-autonomous stochastic wave equations on unbounded domains, which has a non-Lipschitz nonlinearity with critical exponent in the three dimensional case. We introduce the concept of weak upper semicontinuity of multivalued functions and use such continuity to prove the measurability of multivalued functions from a metric space to a separable Banach space. By this approach, we show the measurability of pullback attractors of the multivalued random dynamical system of the wave equations regardless of the completeness of the underlying probability space. The asymptotic compactness of solutions is proved by the method of energy equations, and the difficulty caused by the non-compactness of Sobolev embeddings on $R^n$ is overcome by the uniform estimates on the tails of solutions.
198 - Awadhesh Prasad 2014
A new class of critical points, termed as perpetual points, where acceleration becomes zero but the velocity remains non-zero, are observed in dynamical systems. The velocity at these points is either maximum or minimum or of inflection behavior.These points also show the bifurcation behavior as parameters of the system vary. These perpetual points are useful for locating the hidden oscillating attractors as well as co-existing attractors. Results show that these points are important for better understanding of transient dynamics in the phase space. The existence of these points confirms whether a system is dissipative or not. Various examples are presented, and results are discussed analytically as well as numerically.
A probabilistic model describes a system in its observational state. In many situations, however, we are interested in the systems response under interventions. The class of structural causal models provides a language that allows us to model the behaviour under interventions. It can been taken as a starting point to answer a plethora of causal questions, including the identification of causal effects or causal structure learning. In this chapter, we provide a natural and straight-forward extension of this concept to dynamical systems, focusing on continuous time models. In particular, we introduce two types of causal kinetic models that differ in how the randomness enters into the model: it may either be considered as observational noise or as systematic driving noise. In both cases, we define interventions and therefore provide a possible starting point for causal inference. In this sense, the book chapter provides more questions than answers. The focus of the proposed causal kinetic models lies on the dynamics themselves rather than corresponding stationary distributions, for example. We believe that this is beneficial when the aim is to model the full time evolution of the system and data are measured at different time points. Under this focus, it is natural to consider interventions in the differential equations themselves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا