The upper semicontinuity of random attractors for non-compact random dynamical systems is proved when the union of all perturbed random attractors is precompact with probability one. This result is applied to the stochastic Reaction-Diffusion with white noise defined on the entire space R^n.
We study pullback attractors of non-autonomous non-compact dynamical systems generated by differential equations with non-autonomous deterministic as well as stochastic forcing terms. We first introduce the concepts of pullback attractors and asymptotic compactness for such systems. We then prove a sufficient and necessary condition for existence of pullback attractors. We also introduce the concept of complete orbits for this sort of systems and use these special solutions to characterize the structures of pullback attractors. For random systems containing periodic deterministic forcing terms, we show the pullback attractors are also periodic. As an application of the abstract theory, we prove the existence of a unique pullback attractor for Reaction-Diffusion equations on $R^n$ with both deterministic and random external terms. Since Sobolev embeddings are not compact on unbounded domains, the uniform estimates on the tails of solutions are employed to establish the asymptotic compactness of solutions.
We prove the existence and uniqueness of tempered random attractors for stochastic Reaction-Diffusion equations on unbounded domains with multiplicative noise and deterministic non-autonomous forcing. We establish the periodicity of the tempered attractors when the stochastic equations are forced by periodic functions. We further prove the upper semicontinuity of these attractors when the intensity of stochastic perturbations approaches zero.
This paper deals with the multivalued non-autonomous random dynamical system generated by the non-autonomous stochastic wave equations on unbounded domains, which has a non-Lipschitz nonlinearity with critical exponent in the three dimensional case. We introduce the concept of weak upper semicontinuity of multivalued functions and use such continuity to prove the measurability of multivalued functions from a metric space to a separable Banach space. By this approach, we show the measurability of pullback attractors of the multivalued random dynamical system of the wave equations regardless of the completeness of the underlying probability space. The asymptotic compactness of solutions is proved by the method of energy equations, and the difficulty caused by the non-compactness of Sobolev embeddings on $R^n$ is overcome by the uniform estimates on the tails of solutions.
The existence of a random attractor for the stochastic FitzHugh-Nagumo system defined on an unbounded domain is established. The pullback asymptotic compactness of the stochastic system is proved by uniform estimates on solutions for large space and time variables. These estimates are obtained by a cut-off technique.
This paper is concerned with the asymptotic behavior of solutions of the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. We first introduce a continuous cocycle for the equations and then prove the existence and uniqueness of tempered random attractors. We also characterize the structures of the random attractors by complete solutions. When deterministic forcing terms are periodic, we show that the tempered random attractors are also periodic. Since the Sobolev embeddings on unbounded domains are not compact, we establish the pullback asymptotic compactness of solutions by Balls idea of energy equations.