No Arabic abstract
Using Landau-Ginsburg-Devonshire approach and available experimental results we reconstruct the thermodynamic potential of the layered ferroelectric CuInP$_2$S$_6$ (CIPS), which is expected to be applicable a wide range of temperatures and applied pressures. The analysis of temperature dependences of the dielectric permittivity and lattice constants for different applied pressures unexpectedly reveals the critically important role of the nonlinear electrostriction in this material. With the nonlinear electrostriction included we calculated temperature and pressure phase diagrams and spontaneous polarization of bulk CIPS. Using the coefficients of the reconstructed four-well thermodynamic potential, we study the strain-induced phase transitions in thin epitaxial CIPS films, as well as the stress-induced phase transitions in CIPS nanoparticles, which shape varies from prolate needles to oblate disks. We reveal the strong influence of the mismatch strain, elastic stress and shape anisotropy on the polar properties and phase diagrams of nanoscale CIPS. Also, we derived analytical expressions, which allow the elastic control of the nanoscale CIPS polar properties. Hence obtained results can be of particular interest for the strain-engineering of nanoscale layered nanoferroelectrics.
Layered multi-ferroic materials exhibit a variety of functional properties that can be tuned by varying the temperature and pressure. As-synthesized CuInP$_2$S$_6$ is a layered material that displays ferrielectric behavior at room temperature. When synthesized with Cu deficiencies, CuInP$_2$S$_6$ spontaneously phase segregates to form ferrielectric CuInP$_2$S$_6$ (CIPS) and paraelectric In$_{4/3}$P$_2$S$_6$ (IPS) domains in a two-dimensional self-assembled heterostructure. Here, we study the effect of hydrostatic pressure on the structure of Cu-deficient CuInP$_2$S$_6$ by Raman spectroscopy measurements up to 20 GPa. Detailed analysis of the frequencies, intensities, and linewidths of the Raman peaks reveals four discontinuities in the spectra around 2, 10, 13 and 17 GPa. At ~2 GPa, we observe a structural transition initiated by the diffusion of IPS domains, which culminates in a drastic reduction of the number of peaks around 10 GPa. We attribute this to a possible monoclinic-trigonal phase transition at 10 GPa. At higher pressures (~ 13 GPa), significant increases in peak intensities and sharpening of the Raman peaks suggest a bandgap-lowering and an isostructural electronic transition, with a possible onset of metallization at pressures above 17 GPa. When the pressure is released, the structure again phase-separates into two distinct chemical domains within the same single crystalline framework -- however, these domains are much smaller in size than the as-synthesized material resulting in suppression of ferroelectricity through nanoconfinement. Hydrostatic pressure can thus be used to tune the electronic and ferrielectric properties of Cu-deficient layered CuInP$_2$S$_6$.
Using first-principles calculations and group-theoretical methods, we study the origin and stabilization of ferrielectricity (FiE) in CuInP$_2$Se$_6$. We find that the polar distortions of the metal atoms create most of the polarization in the FiE phase. Surprisingly, the stabilization of the FiE phase comes from an anharmonic coupling between the polar mode and a fully symmetric Raman-active mode comprising primarily of the Se atoms. This coupling is large even down to the monolayer limit, and the degree of anharmonicity is comparable to improper ferroelectrics. Our results open up possibilities for dynamical control of the single-step ferroelectric switching barrier by tuning the Raman-active mode. These findings have important implications not only for designing next-generation microelectronic devices that can overcome the voltage-time dilemma but also in explaining the unconventional responses observed in CuInP$_2$Se$_6$ and similar layered thiophosphates.
Exploring new parameter regimes to realize and control novel phases of matter has been a main theme in modern condensed matter physics research. The recent discovery of 2D magnetism in nearly freestanding monolayer atomic crystals has already led to observations of a number of novel magnetic phenomena absent in bulk counterparts. Such intricate interplays between magnetism and crystalline structures provide ample opportunities for exploring quantum phase transitions in this new 2D parameter regime. Here, using magnetic field and temperature dependent circularly polarized Raman spectroscopy of phonons and magnons, we map out the phase diagram of CrI3 that has been known to be a layered AFM in its 2D films and a FM in its 3D bulk. We, however, reveal a novel mixed state of layered AFM and FM in 3D CrI3 bulk crystals where the layered AFM survives in the surface layers and the FM appears in deeper bulk layers. We then show that the surface layered AFM transits into the FM at a critical magnetic field of 2 T, similar to what was found in the few layer case. Interestingly, concurrent with this magnetic phase transition, we discover a first-order structural phase transition that alters the crystallographic point group from C3i to C2h and thus, from a symmetry perspective, this monoclinic structural phase belongs to the 3D nematic order universality class. Our result not only unveils the complex single magnon behavior in 3D CrI3, but also settles down the puzzle of how CrI3 transits from a bulk FM to a thin layered AFM semiconductor, despite recent efforts in understanding the origin of layered AFM in CrI3 thin layer, and reveals the intimate relationship between the layered AFM-to-FM and the crystalline rhombohedral-to-monoclinic phase transitions. These findings further open up opportunities for future 2D magnet-based magneto-mechanical devices.
Charge density waves are ubiquitous phenomena in metallic transition metal dichalcogenides. In NbSe$_2$, a triangular $3times3$ structural modulation is coupled to a charge modulation. Recent experiments reported evidence for a triangular-stripe transition at the surface, due to strain or accidental doping and associated to a $4times4$ modulation. We employ textit{ab-initio} calculations to investigate the strain-induced structural instabilities in a pristine single layer and analyse the energy hierarchy of the structural and charge modulations. Our results support the observation of phase separation between triangular and stripe phases in 1H-NbSe$_2$, relating the stripe phase to compressive isotropic strain, favouring the $4times4$ modulation. The observed wavelength of the charge modulation is also reproduced with good accuracy.
We report a neutron scattering study of a ferroelectric phase transition in Sr$_{0.61}$Ba$_{0.39}$Nb$_2$O$_6$ (SBN-61). The ferroelectric polarization is along the crystallographic $c$-axis but the transverse acoustic branch propagating along the $<$1, 1, 0$>$ direction does not show any anomaly associated with the this transition. We find no evidence for a soft transverse optic phonon. We do, however, observe elastic diffuse scattering. The intensity of this scattering increases as the sample is cooled from a temperature well above the phase transition. The susceptibility associated with this diffuse scattering follows well the anomaly of the dielectric permittivity of SBN-61. Below T$_mathrm{c}$ the shape of this scattering is consistent with the scattering expected from ferroelectric domain walls. Our results suggest that despite apparent chemical disorder SBN-61 behaves as a classic order-disorder uniaxial ferroelectric with critical fluctuations in the range $<10^{-11}$ s.