Do you want to publish a course? Click here

Quantum Self-Supervised Learning

96   0   0.0 ( 0 )
 Added by Benjamin Jaderberg
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The popularisation of neural networks has seen incredible advances in pattern recognition, driven by the supervised learning of human annotations. However, this approach is unsustainable in relation to the dramatically increasing size of real-world datasets. This has led to a resurgence in self-supervised learning, a paradigm whereby the model generates its own supervisory signal from the data. Here we propose a hybrid quantum-classical neural network architecture for contrastive self-supervised learning and test its effectiveness in proof-of-principle experiments. Interestingly, we observe a numerical advantage for the learning of visual representations using small-scale quantum neural networks over equivalently structured classical networks, even when the quantum circuits are sampled with only 100 shots. Furthermore, we apply our best quantum model to classify unseen images on the ibmq_paris quantum computer and find that current noisy devices can already achieve equal accuracy to the equivalent classical model on downstream tasks.



rate research

Read More

Humans learn to imitate by observing others. However, robot imitation learning generally requires expert demonstrations in the first-person view (FPV). Collecting such FPV videos for every robot could be very expensive. Third-person imitation learning (TPIL) is the concept of learning action policies by observing other agents in a third-person view (TPV), similar to what humans do. This ultimately allows utilizing human and robot demonstration videos in TPV from many different data sources, for the policy learning. In this paper, we present a TPIL approach for robot tasks with egomotion. Although many robot tasks with ground/aerial mobility often involve actions with camera egomotion, study on TPIL for such tasks has been limited. Here, FPV and TPV observations are visually very different; FPV shows egomotion while the agent appearance is only observable in TPV. To enable better state learning for TPIL, we propose our disentangled representation learning method. We use a dual auto-encoder structure plus representation permutation loss and time-contrastive loss to ensure the state and viewpoint representations are well disentangled. Our experiments show the effectiveness of our approach.
While reinforcement learning provides an appealing formalism for learning individual skills, a general-purpose robotic system must be able to master an extensive repertoire of behaviors. Instead of learning a large collection of skills individually, can we instead enable a robot to propose and practice its own behaviors automatically, learning about the affordances and behaviors that it can perform in its environment, such that it can then repurpose this knowledge once a new task is commanded by the user? In this paper, we study this question in the context of self-supervised goal-conditioned reinforcement learning. A central challenge in this learning regime is the problem of goal setting: in order to practice useful skills, the robot must be able to autonomously set goals that are feasible but diverse. When the robots environment and available objects vary, as they do in most open-world settings, the robot must propose to itself only those goals that it can accomplish in its present setting with the objects that are at hand. Previous work only studies self-supervised goal-conditioned RL in a single-environment setting, where goal proposals come from the robots past experience or a generative model are sufficient. In more diverse settings, this frequently leads to impossible goals and, as we show experimentally, prevents effective learning. We propose a conditional goal-setting model that aims to propose goals that are feasible from the robots current state. We demonstrate that this enables self-supervised goal-conditioned off-policy learning with raw image observations in the real world, enabling a robot to manipulate a variety of objects and generalize to new objects that were not seen during training.
Deep learning (DL) has emerged as a powerful tool for accelerated MRI reconstruction, but these methods often necessitate a database of fully-sampled measurements for training. Recent self-supervised and unsupervised learning approaches enable training without fully-sampled data. However, a database of undersampled measurements may not be available in many scenarios, especially for scans involving contrast or recently developed translational acquisitions. Moreover, database-trained models may not generalize well when the unseen measurements differ in terms of sampling pattern, acceleration rate, SNR, image contrast, and anatomy. Such challenges necessitate a new methodology that can enable scan-specific DL MRI reconstruction without any external training datasets. In this work, we propose a zero-shot self-supervised learning approach to perform scan-specific accelerated MRI reconstruction to tackle these issues. The proposed approach splits available measurements for each scan into three disjoint sets. Two of these sets are used to enforce data consistency and define loss during training, while the last set is used to establish an early stopping criterion. In the presence of models pre-trained on a database with different image characteristics, we show that the proposed approach can be combined with transfer learning to further improve reconstruction quality.
Machine learning analysis of longitudinal neuroimaging data is typically based on supervised learning, which requires a large number of ground-truth labels to be informative. As ground-truth labels are often missing or expensive to obtain in neuroscience, we avoid them in our analysis by combing factor disentanglement with self-supervised learning to identify changes and consistencies across the multiple MRIs acquired of each individual over time. Specifically, we propose a new definition of disentanglement by formulating a multivariate mapping between factors (e.g., brain age) associated with an MRI and a latent image representation. Then, factors that evolve across acquisitions of longitudinal sequences are disentangled from that mapping by self-supervised learning in such a way that changes in a single factor induce change along one direction in the representation space. We implement this model, named Longitudinal Self-Supervised Learning (LSSL), via a standard autoencoding structure with a cosine loss to disentangle brain age from the image representation. We apply LSSL to two longitudinal neuroimaging studies to highlight its strength in extracting the brain-age information from MRI and revealing informative characteristics associated with neurodegenerative and neuropsychological disorders. Moreover, the representations learned by LSSL facilitate supervised classification by recording faster convergence and higher (or similar) prediction accuracy compared to several other representation learning techniques.
We propose self-adaptive training -- a unified training algorithm that dynamically calibrates and enhances training process by model predictions without incurring extra computational cost -- to advance both supervised and self-supervised learning of deep neural networks. We analyze the training dynamics of deep networks on training data that are corrupted by, e.g., random noise and adversarial examples. Our analysis shows that model predictions are able to magnify useful underlying information in data and this phenomenon occurs broadly even in the absence of emph{any} label information, highlighting that model predictions could substantially benefit the training process: self-adaptive training improves the generalization of deep networks under noise and enhances the self-supervised representation learning. The analysis also sheds light on understanding deep learning, e.g., a potential explanation of the recently-discovered double-descent phenomenon in empirical risk minimization and the collapsing issue of the state-of-the-art self-supervised learning algorithms. Experiments on the CIFAR, STL and ImageNet datasets verify the effectiveness of our approach in three applications: classification with label noise, selective classification and linear evaluation. To facilitate future research, the code has been made public available at https://github.com/LayneH/self-adaptive-training.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا