Do you want to publish a course? Click here

Liquid Reconfigurable Stealth Window Constructed by Metamaterial Absorber

94   0   0.0 ( 0 )
 Added by Xiangkun Kong
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, a liquid reconfigurable stealth window constructed by metamaterial absorber at microwave band is proposed. The stealth window consists of an anti-reflection glass with indium tin oxide (ITO) as resistive film and a liquid container made of polymethyl methacrylate (PMMA). Since the materials constituting the window are all transparent, the metamaterials that can be switched through the liquid control system can always maintain high light transmission. The proposal can obtain a transmission passband from 2.3 GHz to 5 GHz with low insertion loss, especially at 2.45 GHz and 5 GHz with the insertion loss of the passband reach 0.51 and 0.99 , by alcohol drainage. It can also reflect electromagnetic waves at 2.45 GHz and absorb them from 4.5 GHz to 10.5 GHz with a strong absorptivity over 90% by alcohol injection, exhibiting the reconfigurable electromagnetic characteristic of switching between transmission state and absorption state. Furthermore, the proposed absorber shows its good transmission/absorption performance under different polarizations and obtains absorptivity over 90% when alcohol injection in an oblique incidence of 50{deg}. Finally, the prototype window has been fabricated to demonstrate the validity of the proposed structure, which indicates that the proposal presents significant implications for smart stealth systems and WLAN communication that require switching of working states in a complex electromagnetic environment.



rate research

Read More

Solar arrays are the primary energy source of the satellite. In this paper, a metamaterial absorber for solar arrays with simultaneous high optical transparency and broadband microwave absorption is presented. By tailoring the reflection response of meta-atoms, 85% absorption performance from 6.8GHz to 18GHz is obtained. In the meantime, by employing transparent substrates, including indium tin oxide (ITO) film and anti-reflection glass, a maximum of 87% light transmittance is achieved. The absorptivity of the proposed metamaterial absorber is simulated and measured experimentally. Light transmittance and the effect of transparent metamaterial absorber on the conversion efficiency of the solar array have also been measured. These results fully demonstrate the reliability of our design for solar arrays, which also meet the requirements of structural strength, atomic oxygen erosion resistance, weight limitation, etc.
We propose herein a method of material-structure integrated design for broadband absorption of dielectric metamaterial, which is achieved by combination of genetic algorithm and simulation platform. A multi-layered metamaterial absorber with an ultra-broadband absorption from 5.3 to 18 GHz (a relative bandwidth of as high as 109%) is realized numerically and experimentally. In addition, simulated results demonstrate the proposed metamaterial exhibits good incident angle and polarization tolerance, which also are significant criteria for practical applications. By investigating the working principle with theoretical calculation and numerical simulation, it can be found that merging of multiple resonance modes encompassing quarter-wavelength interference cancellation, spoof surface plasmon polariton mode, dielectric resonance mode and grating mode is responsible for a remarkable ultra-broadband absorption. Analysis of respective contribution of material and structure indicates that either of them plays an indispensable role in activating different resonance modes, and symphony of material and structure is essential to afford desirable target performance. The material-structure integrated design philosophy highlights the superiority of coupling material and structure and provides an effective comprehensive optimization strategy for dielectric metamaterials.
A polarization-independent reconfigurable frequency selective rasorber (FSR)/absorber with low insertion loss based on diodes is proposed in this paper. The presented structure consists of a lossy layer based on square loops and a bandpass frequency-selective surface. These two layers are separated by an air layer. Each layer has an embedded bias network that provides the bias voltage to the diodes through metallic via. This configuration can avoid undesirable effects associated with the additional biasing wire. When the diodes are in off-state, the structure is in FSR mode and exhibits a transmission window at 4.28GHz with only 0.69dB insertion loss (IL) within the absorption bands. While diodes are in on-state and the structure switches to absorber mode, it achieves perfect absorption with absorptivity of over 90% ranging from 2.8 to 5.2 GHz. An equivalent circuit model (ECM) is developed to analyse the physical mechanism of the structure. A prototype of the proposed architecture is fabricated and measured, where reasonable agreements between simulations and measurements are observed, verifying the effectiveness of this design.
We propose a polarization modulation scheme of electromagnetic (EM) waves through reflection of a tunable metamaterial reflector/absorber. By constructing the metamaterial with resonant unit cells coupled by diodes, we demonstrate that the EM reflections for orthogonal polarized incident waves can be tuned independently by adjusting the bias voltages on the corresponding diodes. Owing to this feature, the reflected EM waves can be electrically controlled to a linear polarization with continuously tunable azimuth angle from 0o to 90o at the resonant frequency, or an elliptical polarization with tunable azimuth angle of the major axis when off the resonant frequency. The proposed property has been verified through both numerical simulations and experimental measurements at microwave band, which enables us to electrically modulate the polarization state of EM waves flexibly.
We present the design for an absorbing metamaterial element with near unity absorbance. Our structure consists of two metamaterial resonators that couple separately to electric and magnetic fields so as to absorb all incident radiation within a single unit cell layer. We fabricate, characterize, and analyze a metamaterial absorber with a slightly lower predicted absorbance of 96%. This achieves a simulated full width at half maximum (FWHM) absorbance of 4% thus making this material ideal for imaging purposes. Unlike conventional absorbers, our metamaterial consists solely of metallic elements. The underlying substrate can therefore be chosen independently of the substrates absorptive qualities and optimized for other parameters of interest. We detail the design and simulation process that led to our metamaterial, and our experiments demonstrate a peak absorbance greater than 88% at 11.5 GHz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا