No Arabic abstract
We propose a polarization modulation scheme of electromagnetic (EM) waves through reflection of a tunable metamaterial reflector/absorber. By constructing the metamaterial with resonant unit cells coupled by diodes, we demonstrate that the EM reflections for orthogonal polarized incident waves can be tuned independently by adjusting the bias voltages on the corresponding diodes. Owing to this feature, the reflected EM waves can be electrically controlled to a linear polarization with continuously tunable azimuth angle from 0o to 90o at the resonant frequency, or an elliptical polarization with tunable azimuth angle of the major axis when off the resonant frequency. The proposed property has been verified through both numerical simulations and experimental measurements at microwave band, which enables us to electrically modulate the polarization state of EM waves flexibly.
A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-frequencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7GHz, and the absorption is kept large when the incident angle is smaller than 60 degrees. The experimental results agree well with the numerical simulation.
An infrared perfect absorber based on gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Simulation results show that the designed metamaterial absorber is polarization-insensitive and nearly omnidirectional for the incident angle.
The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can also support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we can get rid of this dip if the absorption band edge at long wavelength range is reduced down to 5 micrometer. The parametrical study reflects that the absorption bandwidth is mainly determined by the filling ratio of tungsten as well as the bottom diameter of the nano-cones and the interaction between neighboring nano-cones is quite weak. Our proposal has some potential applications in the areas of solar energy harvesting and thermal emitters.
In this article, a 2D plasmonic waveguide loaded with all dielectric anisotropic metamaterial, consisting of alternative layers of Si-SiO2, has been theoretically proposed and numerically analyzed. Main characteristics of waveguide i.e. propagation constant, propagation length and normalized mode area have been calculated for different values of ridge width and height at telecommunication wavelength. The respective 1D structure of the waveguide has been analytically solved for the anisotropic ridge as a single uniaxial medium with dielectric tensor defined by Effective Medium Theory (EMT). The 2D structure has been analyzed numerically through FEM simulation using Mode analysis module in Comsol Multiphysics. Both the EMT and real multilayer structure have been considered in numerical simulations. Such structure with all dielectric metamaterial provides an extra degree of freedom namely fill factor, fraction of Si layer in a Si-SiO2 unit cell, to tune the propagation characteristics compared to the conventional DLSSP waveguide. A wide range of variations in all the characteristics have been observed for different fill factor values. Besides, the effect of the first interface layer has also been considered. Though all dielectric metamaterial has already been utilized in photonic waveguide as cladding, the implementation in plasmonic waveguide has not been investigated yet to our best knowledge. The proposed device might be a potential in deep sub-wavelength optics, PIC and optoelectronics.
Electromagnetic absorbers have drawn increasing attention in many areas. A series of plasmonic and metamaterial structures can work as efficient narrow band absorbers due to the excitation of plasmonic or photonic resonances, providing a great potential for applications in designing selective thermal emitters, bio-sensing, etc. In other applications such as solar energy harvesting and photonic detection, the bandwidth of light absorbers is required to be quite broad. Under such a background, a variety of mechanisms of broadband/multiband absorption have been proposed, such as mixing multiple resonances together, exciting phase resonances, slowing down light by anisotropic metamaterials, employing high loss materials and so on.