No Arabic abstract
This paper explores methods for constructing low multipole temperature and polarisation likelihoods from maps of the cosmic microwave background anisotropies that have complex noise properties and partial sky coverage. We use Planck 2018 High Frequency Instrument (HFI) and updated SRoll2 temperature and polarisation maps to test our methods. We present three likelihood approximations based on quadratic cross spectrum estimators: (i) a variant of the simulation-based likelihood (SimBaL) techniques used in the Planck legacy papers to produce a low multipole EE likelihood; (ii) a semi-analytical likelihood approximation (momento) based on the principle of maximum entropy; (iii) a density-estimation `likelihood-free scheme (DELFI). Approaches (ii) and (iii) can be generalised to produce low multipole joint temperature-polarisation (TTTEEE) likelihoods. We present extensive tests of these methods on simulations with realistic correlated noise. We then analyse the Planck data and confirm the robustness of our method and likelihoods on multiple inter- and intra-frequency detector set combinations of SRoll2 maps. The three likelihood techniques give consistent results and support a low value of the optical depth to reoinization, tau, from the HFI. Our best estimate of tau comes from combining the low multipole SRoll2 momento (TTTEEE) likelihood with the CamSpec high multipole likelihood and is tau = 0.0627+0.0050-0.0058. This is consistent with the SRoll2 teams determination of tau, though slightly higher by 0.5 sigma, mainly because of our joint treatment of temperature and polarisation.
We present an estimation of the reionization optical depth $tau$ from an improved analysis of the High Frequency Instrument (HFI) data of Planck satellite. By using an improved version of the HFI map-making code, we greatly reduce the residual large scale contamination affecting the data, characterized, but not fully removed, in the Planck 2018 legacy release. This brings the dipole distortion systematic effect, contaminating the very low multipoles, below the noise level. On large scale polarization only data, we measure $tau=0.0566_{-0.0062}^{+0.0053}$ at $68%$ C.L., reducing the Planck 2018 legacy release uncertainty by $sim40%$. Within the $Lambda$CDM model, in combination with the Planck large scale temperature likelihood, and the high-$ell$ temperature and polarization likelihood, we measure $tau=0.059pm0.006$ at $68%$ C.L. which corresponds to a mid-point reionization redshift of $z_{rm re}=8.14pm0.61$ at $68%$ C.L.. This estimation of the reionization optical depth with $10%$ accuracy is the strongest constraint to date.
The Epoch of Reionization (EoR) depends on the complex astrophysics governing the birth and evolution of the first galaxies and structures in the intergalactic medium. EoR models rely on cosmic microwave background (CMB) observations, and in particular the large-scale E-mode polarization power spectra (EE PS), to help constrain their highly uncertain parameters. However, rather than directly forward-modelling the EE PS, most EoR models are constrained using a summary statistic -- the Thompson scattering optical depth, $tau_e$. Compressing CMB observations to $tau_e$ requires adopting a basis set for the EoR history. The common choice is the unphysical, redshift-symmetric hyperbolic tangent (Tanh) function, which differs in shape from physical EoR models based on hierarchical structure formation. Combining public EoR and CMB codes, 21cmFAST and CLASS, here we quantify how inference using the $tau_e$ summary statistic impacts the resulting constraints on galaxy properties and EoR histories. Using the last Planck 2018 data release, we show that the marginalized constraints on the EoR history are more sensitive to the choice of the basis set (Tanh vs physical model) than to the CMB likelihood statistic ($tau_e$ vs PS). For example, EoR histories implied by the growth of structure show a small tail of partial reionization extending to higher redshifts. However, biases in inference using $tau_e$ are negligible for the Planck 2018 data. Using EoR constraints from high-redshift observations including the quasar dark fraction, galaxy UV luminosity functions and CMB EE PS, our physical model recovers $tau_e=0.0569^{+0.0081}_{-0.0066}$.
The reionization optical depth is the most poorly determined of the six $Lambda$CDM parameters fit to CMB anisotropy data. Instrumental noise and systematics have prevented uncertainties from reaching their cosmic variance limit. At present, the datasets providing the most statistical constraining power are the WMAP, Planck LFI, and Planck HFI full-sky polarization maps. As the reprocessed HFI data with reduced systematics are not yet publicly unavailable, we examine determinations of $tau$ using 9-year WMAP and 2015 Planck LFI data, with an emphasis on characterizing potential systematic bias resulting from foreground template and masking choices. We find evidence for a low-level systematic in the LFI polarization data with a roughly common-mode morphology across the LFI frequencies and a spectrum consistent with leakage of intensity signal into the polarization channels. We demonstrate significant bias in the optical depth derived when using the LFI 30 GHz map as a template to clean synchrotron from WMAP data, and recommend against use of the 2015 LFI 30 GHz polarization data as a foreground template for non-LFI datasets. We find an inconsistency betwe
Features during inflation and reionization leave corresponding features in the temperature and polarization power spectra that could potentially explain anomalies in the Planck 2015 data but require a joint analysis to disentangle. We study the interplay between these two effects using a model-independent parametrization of the inflationary power spectrum and the ionization history. Preference for a sharp suppression of large scale power is driven by a feature in the temperature power spectrum at multipoles $ell sim 20$, whereas preference for a component of high redshift ionization is driven by a sharp excess of polarization power at $ell sim 10$ when compared with the lowest multipoles. Marginalizing inflationary freedom does not weaken the preference for $z gtrsim 10$ ionization, whereas marginalizing reionization freedom slightly enhances the preference for an inflationary feature but can also mask its direct signature in polarization. The inflation and reionization interpretation of these features makes predictions for the polarization spectrum which can be tested in future precision measurements especially at $10lesssim ell lesssim 40$.
We present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. We estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at $2sigma$. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchy reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of $sim0.5$ as $Rgtrsim 10$ Mpc. Further, our constraint implies that large-scale $B$-modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of $rgtrsim0.001$ if the $B$ mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.