No Arabic abstract
We propose a primal-dual interior-point method (IPM) with convergence to second-order stationary points (SOSPs) of nonlinear semidefinite optimization problems, abbreviated as NSDPs. As far as we know, the current algorithms for NSDPs only ensure convergence to first-order stationary points such as Karush-Kuhn-Tucker points. The proposed method generates a sequence approximating SOSPs while minimizing a primal-dual merit function for NSDPs by using scaled gradient directions and directions of negative curvature. Under some assumptions, the generated sequence accumulates at an SOSP with a worst-case iteration complexity. This result is also obtained for a primal IPM with slight modification. Finally, our numerical experiments show the benefits of using directions of negative curvature in the proposed method.
We provide a condition-based analysis of two interior-point methods for unconstrained geometric programs, a class of convex programs that arise naturally in applications including matrix scaling, matrix balancing, and entropy maximization. Our condition numbers are natural geometric quantities associated with the Newton polytope of the geometric program, and lead to diameter bounds on approximate minimizers. We also provide effective bounds on the condition numbers both in general and under combinatorial assumptions on the Newton polytope. In this way, we generalize the iteration complexity of recent interior-point methods for matrix scaling and matrix balancing. Recently, there has been much work on algorithms for certain optimization problems on Lie groups, known as capacity and scaling problems. For commutative groups, these problems reduce to unconstrained geometric programs, which serves as a particular source of motivation for our work.
We establish lower bounds on the complexity of finding $epsilon$-stationary points of smooth, non-convex high-dimensional functions using first-order methods. We prove that deterministic first-order methods, even applied to arbitrarily smooth functions, cannot achieve convergence rates in $epsilon$ better than $epsilon^{-8/5}$, which is within $epsilon^{-1/15}logfrac{1}{epsilon}$ of the best known rate for such methods. Moreover, for functions with Lipschitz first and second derivatives, we prove no deterministic first-order method can achieve convergence rates better than $epsilon^{-12/7}$, while $epsilon^{-2}$ is a lower bound for functions with only Lipschitz gradient. For convex functions with Lipschitz gradient, accelerated gradient descent achieves the rate $epsilon^{-1}logfrac{1}{epsilon}$, showing that finding stationary points is easier given convexity.
Finite-sum optimization problems are ubiquitous in machine learning, and are commonly solved using first-order methods which rely on gradient computations. Recently, there has been growing interest in emph{second-order} methods, which rely on both gradients and Hessians. In principle, second-order methods can require much fewer iterations than first-order methods, and hold the promise for more efficient algorithms. Although computing and manipulating Hessians is prohibitive for high-dimensional problems in general, the Hessians of individual functions in finite-sum problems can often be efficiently computed, e.g. because they possess a low-rank structure. Can second-order information indeed be used to solve such problems more efficiently? In this paper, we provide evidence that the answer -- perhaps surprisingly -- is negative, at least in terms of worst-case guarantees. However, we also discuss what additional assumptions and algorithmic approaches might potentially circumvent this negative result.
We propose an algorithm for solving nonlinear convex programs defined in terms of a symmetric positive semidefinite matrix variable $X$. This algorithm rests on the factorization $X=Y Y^T$, where the number of columns of Y fixes the rank of $X$. It is thus very effective for solving programs that have a low rank solution. The factorization $X=Y Y^T$ evokes a reformulation of the original problem as an optimization on a particular quotient manifold. The present paper discusses the geometry of that manifold and derives a second order optimization method. It furthermore provides some conditions on the rank of the factorization to ensure equivalence with the original problem. The efficiency of the proposed algorithm is illustrated on two applications: the maximal cut of a graph and the sparse principal component analysis problem.
In this paper we study second-order optimality conditions for non-convex set-constrained optimization problems. For a convex set-constrained optimization problem, it is well-known that second-order optimality conditions involve the support function of the second-order tangent set. In this paper we propose two approaches for establishing second-order optimality conditions for the non-convex case. In the first approach we extend the concept of the support function so that it is applicable to general non-convex set-constrained problems, whereas in the second approach we introduce the notion of the directional regular tangent cone and apply classical results of convex duality theory. Besides the second-order optimality conditions, the novelty of our approach lies in the systematic introduction and use, respectively, of direction