Do you want to publish a course? Click here

A Gross-Pitaevskii-equation description of the momentum-state lattice: roles of the trap and many-body interactions

121   0   0.0 ( 0 )
 Added by Tao Chen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a theoretical description of the synthetic momentum-state lattices with a 3D Gross-Pitaevskii equation (GPE), where both the external trap potential and the mean-field spatial-density-dependent many-body interactions are naturally included and exactly treated. The GPE models exhibit better performance than the tight-binding model to depict the experimental observations. Since the trap modifies the dispersion relation for free particles and shapes the spatial density distribution that leads to inhomogeneous interactions, decoherences (damping oscillation) appear even for a short-time evolution. Our parametric calculations for the two-state oscillation suggest that we should work with a relatively shallow trap in the weakly interacting regime, especially when the long-term dynamics are concerned. The impact of the mean-field interaction, i.e., the self-trapping behavior, on the transport dynamics and the topological phase transition in a finite multiple-state lattice chain is also specifically investigated. Such an accurate treatment of the inhomogeneous interactions allows for further investigations on the interplay with disorder, the pair correlation dynamics, and the thermalization process in momentum space.



rate research

Read More

Many of the static and dynamic properties of an atomic Bose-Einstein condensate (BEC) are usually studied by solving the mean-field Gross-Pitaevskii (GP) equation, which is a nonlinear partial differential equation for short-range atomic interaction. More recently, BEC of atoms with long-range dipolar atomic interaction are used in theoretical and experimental studies. For dipolar atomic interaction, the GP equation is a partial integro-differential equation, requiring complex algorithm for its numerical solution. Here we present numerical algorithms for both stationary and non-stationary solutions of the full three-dimensional (3D) GP equation for a dipolar BEC, including the contact interaction. We also consider the simplified one- (1D) and two-dimensional (2D) GP equations satisfied by cigar- and disk-shaped dipolar BECs. We employ the split-step Crank-Nicolson method with real- and imaginary-time propagations, respectively, for the numerical solution of the GP equation for dynamic and static properties of a dipolar BEC. The atoms are considered to be polarized along the z axis and we consider ten different cases, e.g., stationary and non-stationary solutions of the GP equation for a dipolar BEC in 1D (along x and z axes), 2D (in x-y and x-z planes), and 3D, and we provide working codes in Fortran 90/95 and C for these ten cases (twenty programs in all). We present numerical results for energy, chemical potential, root-mean-square sizes and density of the dipolar BECs and, where available, compare them with results of other authors and of variational and Thomas-Fermi approximations.
We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e. by integrating over the coordinates. A direct comparison with the solution of the Gross-Pitaevskii equation shows that the effective scaling reproduces with great accuracy the exact evolution - the actual wave function is reproduced with a fidelity close to unity - for arbitrary values of the interactions. This result represents a proof-of-concept of the effectiveness of the scaling ansatz, which has been used in different forms in the literature but never compared with the exact evolution.
We consider the two-dimensional Gross-Pitaevskii equation describing a Bose-Einstein condensate in an isotropic harmonic trap. In the small coupling regime, this equation is accurately approximated over long times by the corresponding nonlinear resonant system whose structure is determined by the fully resonant spectrum of the linearized problem. We focus on two types of consistent truncations of this resonant system: first, to sets of modes of fixed angular momentum, and second, to excited Landau levels. Each of these truncations admits a set of explicit analytic solutions with initial conditions parametrized by three complex numbers. Viewed in position space, the fixed angular momentum solutions describe modulated oscillations of dark rings, while the excited Landau level solutions describe modulated precession of small arrays of vortices and antivortices. We place our findings in the context of similar results for other spatially confined nonlinear Hamiltonian systems in recent literature.
The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates (BECs) at the mean-field level. The GPE belongs to the class of non-linear Schrodinger equations which are known to feature dynamical instability and collapse for attractive non-linear interactions. We show that the GPE with repulsive non-linear interactions typical for BECs features chaotic wave dynamics. We find positive Lyapunov exponents for BECs expanding in periodic and aperiodic smooth external potentials as well as disorder potentials. Our analysis demonstrates that wave chaos characterized by the exponential divergence of nearby initial wavefunctions is to be distinguished from the notion of non-integrability of non-linear wave equations. We discuss the implications of these observations for the limits of applicability of the GPE, the problem of Anderson localization, and the properties of the underlying many-body dynamics.
Previous simulations of the one-dimensional Gross-Pitaevskii equation (GPE) with repulsive nonlinearity and a harmonic-oscillator trapping potential hint towards the emergence of quasi-integrable dynamics -- in the sense of quasi-periodic evolution of a moving dark soliton without any signs of ergodicity -- although this model does not belong to the list of integrable equations. To investigate this problem, we replace the full GPE by a suitably truncated expansion over harmonic-oscillator eigenmodes (the Galerkin approximation), which accurately reproduces the full dynamics, and then analyze the systems dynamical spectrum. The analysis enables us to interpret the observed quasi-integrability as the fact that the finite-mode dynamics always produces a quasi-discrete power spectrum, with no visible continuous component, the presence of the latter being a necessary manifestation of ergodicity. This conclusion remains true when a strong random-field component is added to the initial conditions. On the other hand, the same analysis for the GPE in an infinitely deep potential box leads to a clearly continuous power spectrum, typical for ergodic dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا