No Arabic abstract
We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e. by integrating over the coordinates. A direct comparison with the solution of the Gross-Pitaevskii equation shows that the effective scaling reproduces with great accuracy the exact evolution - the actual wave function is reproduced with a fidelity close to unity - for arbitrary values of the interactions. This result represents a proof-of-concept of the effectiveness of the scaling ansatz, which has been used in different forms in the literature but never compared with the exact evolution.
We describe a method for evolving the projected Gross-Pitaevskii equation (PGPE) for an interacting Bose gas in a harmonic oscillator potential, with the inclusion of a long-range dipolar interaction. The central difficulty in solving this equation is the requirement that the field is restricted to a small set of prescribed modes that constitute the low energy c-field region of the system. We present a scheme, using a Hermite-polynomial based spectral representation, that precisely implements this mode restriction and allows an efficient and accurate solution of the dipolar PGPE. We introduce a set of auxiliary oscillator states to perform a Fourier transform necessary to evaluate the dipolar interaction in reciprocal space. We extensively characterize the accuracy of our approach, and derive Ehrenfest equations for the evolution of the angular momentum.
We consider a dilute and ultracold bosonic gas of weakly-interacting atoms. Within the framework of quantum field theory we derive a zero-temperature modified Gross-Pitaevskii equation with beyond-mean-field corrections due to quantum depletion and anomalous density. This result is obtained from the stationary equation of the Bose-Einstein order parameter coupled to the Bogoliubov-de Gennes equations of the out-of-condensate field operator. We show that, in the presence of a generic external trapping potential, the key steps to get the modified Gross-Pitaevskii equation are the semiclassical approximation for the Bogoliubov-de Gennes equations, a slowly-varying order parameter, and a small quantum depletion. In the uniform case, from the modified Gross-Pitaevskii equation we get the familiar equation of state with Lee-Huang-Yang correction.
We consider the two-dimensional Gross-Pitaevskii equation describing a Bose-Einstein condensate in an isotropic harmonic trap. In the small coupling regime, this equation is accurately approximated over long times by the corresponding nonlinear resonant system whose structure is determined by the fully resonant spectrum of the linearized problem. We focus on two types of consistent truncations of this resonant system: first, to sets of modes of fixed angular momentum, and second, to excited Landau levels. Each of these truncations admits a set of explicit analytic solutions with initial conditions parametrized by three complex numbers. Viewed in position space, the fixed angular momentum solutions describe modulated oscillations of dark rings, while the excited Landau level solutions describe modulated precession of small arrays of vortices and antivortices. We place our findings in the context of similar results for other spatially confined nonlinear Hamiltonian systems in recent literature.
We review the stochastic Gross-Pitaevskii approach for non-equilibrium finite temperature Bose gases, focussing on the formulation of Stoof; this method provides a unified description of condensed and thermal atoms, and can thus describe the physics of the critical fluctuation regime. We discuss simplifications of the full theory, which facilitate straightforward numerical implementation, and how the results of such stochastic simulations can be interpreted, including the procedure for extracting phase-coherent (`condensate) and density-coherent (`quasi-condensate) fractions. The power of this methodology is demonstrated by successful ab initio modelling of several recent atom chip experiments, with the important information contained in each individual realisation highlighted by analysing dark soliton decay within a phase-fluctuating condensate.
The Gross-Pitaevskii equation (GPE) plays an important role in the description of Bose-Einstein condensates (BECs) at the mean-field level. The GPE belongs to the class of non-linear Schrodinger equations which are known to feature dynamical instability and collapse for attractive non-linear interactions. We show that the GPE with repulsive non-linear interactions typical for BECs features chaotic wave dynamics. We find positive Lyapunov exponents for BECs expanding in periodic and aperiodic smooth external potentials as well as disorder potentials. Our analysis demonstrates that wave chaos characterized by the exponential divergence of nearby initial wavefunctions is to be distinguished from the notion of non-integrability of non-linear wave equations. We discuss the implications of these observations for the limits of applicability of the GPE, the problem of Anderson localization, and the properties of the underlying many-body dynamics.