Do you want to publish a course? Click here

StyleLess layer: Improving robustness for real-world driving

114   0   0.0 ( 0 )
 Added by Julien Rebut
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep Neural Networks (DNNs) are a critical component for self-driving vehicles. They achieve impressive performance by reaping information from high amounts of labeled data. Yet, the full complexity of the real world cannot be encapsulated in the training data, no matter how big the dataset, and DNNs can hardly generalize to unseen conditions. Robustness to various image corruptions, caused by changing weather conditions or sensor degradation and aging, is crucial for safety when such vehicles are deployed in the real world. We address this problem through a novel type of layer, dubbed StyleLess, which enables DNNs to learn robust and informative features that can cope with varying external conditions. We propose multiple variations of this layer that can be integrated in most of the architectures and trained jointly with the main task. We validate our contribution on typical autonomous-driving tasks (detection, semantic segmentation), showing that in most cases, this approach improves predictive performance on unseen conditions (fog, rain), while preserving performance on seen conditions and objects.



rate research

Read More

Systematic error, which is not determined by chance, often refers to the inaccuracy (involving either the observation or measurement process) inherent to a system. In this paper, we exhibit some long-neglected but frequent-happening adversarial examples caused by systematic error. More specifically, we find the trained neural network classifier can be fooled by inconsistent implementations of image decoding and resize. This tiny difference between these implementations often causes an accuracy drop from training to deployment. To benchmark these real-world adversarial examples, we propose ImageNet-S dataset, which enables researchers to measure a classifiers robustness to systematic error. For example, we find a normal ResNet-50 trained on ImageNet can have 1%-5% accuracy difference due to the systematic error. Together our evaluation and dataset may aid future work toward real-world robustness and practical generalization.
Deep learning has rapidly transformed the state of the art algorithms used to address a variety of problems in computer vision and robotics. These breakthroughs have relied upon massive amounts of human annotated training data. This time consuming process has begun impeding the progress of these deep learning efforts. This paper describes a method to incorporate photo-realistic computer images from a simulation engine to rapidly generate annotated data that can be used for the training of machine learning algorithms. We demonstrate that a state of the art architecture, which is trained only using these synthetic annotations, performs better than the identical architecture trained on human annotated real-world data, when tested on the KITTI data set for vehicle detection. By training machine learning algorithms on a rich virtual world, real objects in real scenes can be learned and classified using synthetic data. This approach offers the possibility of accelerating deep learnings application to sensor-based classification problems like those that appear in self-driving cars. The source code and data to train and validate the networks described in this paper are made available for researchers.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. Our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code is available at https://github.com/facebookresearch/ImageNet-Adversarial-Training.
Understanding occupant-vehicle interactions by modeling control transitions is important to ensure safe approaches to passenger vehicle automation. Models which contain contextual, semantically meaningful representations of driver states can be used to determine the appropriate timing and conditions for transfer of control between driver and vehicle. However, such models rely on real-world control take-over data from drivers engaged in distracting activities, which is costly to collect. Here, we introduce a scheme for data augmentation for such a dataset. Using the augmented dataset, we develop and train take-over time (TOT) models that operate sequentially on mid and high-level features produced by computer vision algorithms operating on different driver-facing camera views, showing models trained on the augmented dataset to outperform the initial dataset. The demonstrated model features encode different aspects of the driver state, pertaining to the face, hands, foot and upper body of the driver. We perform ablative experiments on feature combinations as well as model architectures, showing that a TOT model supported by augmented data can be used to produce continuous estimates of take-over times without delay, suitable for complex real-world scenarios.
117 - Jiahuan Luo , Xueyang Wu , Yun Luo 2019
Federated learning is a new machine learning paradigm which allows data parties to build machine learning models collaboratively while keeping their data secure and private. While research efforts on federated learning have been growing tremendously in the past two years, most existing works still depend on pre-existing public datasets and artificial partitions to simulate data federations due to the lack of high-quality labeled data generated from real-world edge applications. Consequently, advances on benchmark and model evaluations for federated learning have been lagging behind. In this paper, we introduce a real-world image dataset. The dataset contains more than 900 images generated from 26 street cameras and 7 object categories annotated with detailed bounding box. The data distribution is non-IID and unbalanced, reflecting the characteristic real-world federated learning scenarios. Based on this dataset, we implemented two mainstream object detection algorithms (YOLO and Faster R-CNN) and provided an extensive benchmark on model performance, efficiency, and communication in a federated learning setting. Both the dataset and algorithms are made publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا